These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The transport of chloroquine across human erythrocyte membranes is mediated by a simple symmetric carrier. Yayon A, Ginsburg H. Biochim Biophys Acta; 1982 Apr 07; 686(2):197-203. PubMed ID: 7082662 [Abstract] [Full Text] [Related]
7. The triiodothyronine carrier of rat erythrocytes: asymmetry and mechanisms of trans-inhibition. Osty J, Zhou Y, Chantoux F, Francon J, Blondeau JP. Biochim Biophys Acta; 1990 Jan 23; 1051(1):46-51. PubMed ID: 2297539 [Abstract] [Full Text] [Related]
8. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Baker GF, Naftalin RJ. Biochim Biophys Acta; 1979 Feb 02; 550(3):474-84. PubMed ID: 420829 [Abstract] [Full Text] [Related]
9. The transport of L-leucine in human erythrocytes: a new kinetic analysis. Hoare DG. J Physiol; 1972 Mar 02; 221(2):311-29. PubMed ID: 5020980 [Abstract] [Full Text] [Related]
10. Kinetics of nucleoside transport in human erythrocytes. Alterations during blood preservation. Plagemann PG, Wohlhueter RM. Biochim Biophys Acta; 1984 Nov 21; 778(1):176-84. PubMed ID: 6498185 [Abstract] [Full Text] [Related]
11. Effects of temperature on the transport of galactose in human erythrocytes. Ginsburg H, Yeroushalmy S. J Physiol; 1978 Sep 21; 282():399-417. PubMed ID: 722542 [Abstract] [Full Text] [Related]
12. An analysis of the adequacy of the asymmetric carrier model for sugar transport. Foster DM, Jacquez JA. Biochim Biophys Acta; 1976 Jun 04; 436(1):210-21. PubMed ID: 1276212 [Abstract] [Full Text] [Related]
13. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL, Carruthers A. Biochemistry; 1989 May 30; 28(11):4580-94. PubMed ID: 2765504 [Abstract] [Full Text] [Related]
14. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system. De Bruijne AW, Vreeburg H, Van Steveninck J. Biochim Biophys Acta; 1983 Aug 10; 732(3):562-8. PubMed ID: 6871216 [Abstract] [Full Text] [Related]
15. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C. Wheeler TJ. Biochim Biophys Acta; 1986 Nov 17; 862(2):387-98. PubMed ID: 3778899 [Abstract] [Full Text] [Related]
16. Zero-trans uptake of L-tryptophan in the human erythrocyte. Rosenberg R. J Neural Transm Suppl; 1979 Nov 17; (15):153-60. PubMed ID: 290753 [Abstract] [Full Text] [Related]
17. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry and differential mobility of loaded and empty carrier. Plagemann PG, Wohlhueter RM, Erbe J. J Biol Chem; 1982 Oct 25; 257(20):12069-74. PubMed ID: 7118930 [Abstract] [Full Text] [Related]
18. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: I. Kinetic properties of NBD-taurine transfer in symmetric conditions. Eidelman O, Cabantchik ZI. J Membr Biol; 1983 Oct 25; 71(1-2):141-8. PubMed ID: 6834419 [Abstract] [Full Text] [Related]
19. Use of membrane vesicles to estimate the numbers of system y+ and system L amino acid transporters in human erythrocytes. Tse CM, Fincham DA, Ellory JC, Young JD. Biochem J; 1991 Jul 15; 277 ( Pt 2)(Pt 2):565-8. PubMed ID: 1907132 [Abstract] [Full Text] [Related]
20. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step. Angelo S, Devés R. J Membr Biol; 1994 Aug 15; 141(2):183-92. PubMed ID: 7807519 [Abstract] [Full Text] [Related] Page: [Next] [New Search]