These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 7283973
1. Use of fluorescent probes in the study of phospholipid--sterol bilayers. Wharton SA, De Martinez SG, Green C. Biochem J; 1980 Dec 01; 191(3):785-90. PubMed ID: 7283973 [Abstract] [Full Text] [Related]
2. Lipid chain order and dynamics at different bilayer depths in liposomes of several phosphatidylcholines studied by differential polarized phase fluorescence. Tricerri MA, Garda HA, Brenner RR. Chem Phys Lipids; 1994 May 06; 71(1):61-72. PubMed ID: 8039258 [Abstract] [Full Text] [Related]
3. Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes. Hyslop PA, Morel B, Sauerheber RD. Biochemistry; 1990 Jan 30; 29(4):1025-38. PubMed ID: 2160270 [Abstract] [Full Text] [Related]
4. The interaction of cholesterol and cholest-4-en-3-one with dipalmitoylphosphatidylcholine. Comparison based on the use of three fluorophores. Ben-Yashar V, Barenholz Y. Biochim Biophys Acta; 1989 Nov 03; 985(3):271-8. PubMed ID: 2804109 [Abstract] [Full Text] [Related]
5. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG, Mannock DA, Lewis RN, McElhaney RN. Chem Phys Lipids; 2014 Jan 03; 177():71-90. PubMed ID: 24296232 [Abstract] [Full Text] [Related]
6. Effects of cholesterol on acyl chain dynamics in multilamellar vesicles of various phosphatidylcholines. Kutchai H, Chandler LH, Zavoico GB. Biochim Biophys Acta; 1983 Dec 21; 736(2):137-49. PubMed ID: 6652079 [Abstract] [Full Text] [Related]
7. Cholesterol versus alpha-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines. Stillwell W, Dallman T, Dumaual AC, Crump FT, Jenski LJ. Biochemistry; 1996 Oct 15; 35(41):13353-62. PubMed ID: 8873602 [Abstract] [Full Text] [Related]
8. The quenching of an intramembrane fluorescent probe. A method to study the binding and permeation of phloretin through bilayers. Verkman AS. Biochim Biophys Acta; 1980 Jul 15; 599(2):370-9. PubMed ID: 7407100 [Abstract] [Full Text] [Related]
9. Fluorescent probes in model membranes I: anthroyl fatty acid derivatives in monolayers and liposomes of dipalmitoylphosphatidylcholine. Cadenhead DA, Kellner BM, Jacobson K, Papahadjopoulos D. Biochemistry; 1977 Nov 29; 16(24):5386-92. PubMed ID: 921941 [Abstract] [Full Text] [Related]
10. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. Nyström JH, Lönnfors M, Nyholm TK. Biophys J; 2010 Jul 21; 99(2):526-33. PubMed ID: 20643071 [Abstract] [Full Text] [Related]
11. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Kaiser RD, London E. Biochemistry; 1998 Jun 02; 37(22):8180-90. PubMed ID: 9609714 [Abstract] [Full Text] [Related]
12. Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles. Schroeder F, Nemecz G, Gratton E, Barenholz Y, Thompson TE. Biophys Chem; 1988 Oct 02; 32(1):57-72. PubMed ID: 3233314 [Abstract] [Full Text] [Related]
13. The effects of cholesterol on the time-resolved emission anisotropy of 12-(9-anthroyloxy)stearic acid in dipalmitoylphosphatidylcholine bilayers. Thulborn KR, Beddard GS. Biochim Biophys Acta; 1982 Dec 08; 693(1):246-52. PubMed ID: 7150592 [Abstract] [Full Text] [Related]
14. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Bernsdorff C, Wolf A, Winter R, Gratton E. Biophys J; 1997 Mar 08; 72(3):1264-77. PubMed ID: 9138572 [Abstract] [Full Text] [Related]
15. Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer. Davenport L, Dale RE, Bisby RH, Cundall RB. Biochemistry; 1985 Jul 16; 24(15):4097-108. PubMed ID: 3931673 [Abstract] [Full Text] [Related]
16. Partitioning of fluorescent phospholipid probes between different bilayer environments. Estimation of the free energy of interlipid hydrogen bonding. Shin TB, Leventis R, Silvius JR. Biochemistry; 1991 Jul 30; 30(30):7491-7. PubMed ID: 1854750 [Abstract] [Full Text] [Related]
17. Effect of the asymmetric Ca2+ distribution on the bilayer properties of phosphatidylcholine-sonicated vesicles. Bakás LS, Disalvo EA. Biochim Biophys Acta; 1989 Mar 13; 979(3):352-60. PubMed ID: 2923889 [Abstract] [Full Text] [Related]
18. Fluorescence lifetime distributions of diphenylhexatriene-labeled phosphatidylcholine as a tool for the study of phospholipid-cholesterol interactions. Kalb E, Paltauf F, Hermetter A. Biophys J; 1989 Dec 13; 56(6):1245-53. PubMed ID: 2611334 [Abstract] [Full Text] [Related]
19. Perturbations to lipid bilayers by spectroscopic probes as determined by dielectric measurements. Ashcroft RG, Thulborn KR, Smith JR, Coster HG, Sawyer WH. Biochim Biophys Acta; 1980 Nov 04; 602(2):299-308. PubMed ID: 7426652 [Abstract] [Full Text] [Related]
20. Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer. Demchenko AP, Shcherbatska NV. Biophys Chem; 1985 Aug 04; 22(3):131-43. PubMed ID: 4052570 [Abstract] [Full Text] [Related] Page: [Next] [New Search]