These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 7295345
1. Self-catalysed, O2-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride. de Groot H, Haas W. Biochem Pharmacol; 1981 Aug 15; 30(16):2343-7. PubMed ID: 7295345 [No Abstract] [Full Text] [Related]
2. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450. Ahr HJ, King LJ, Nastainczyk W, Ullrich V. Biochem Pharmacol; 1980 Oct 15; 29(20):2855-61. PubMed ID: 7437085 [No Abstract] [Full Text] [Related]
3. The mechanism of the suicidal, reductive inactivation of microsomal cytochrome P-450 by carbon tetrachloride. Manno M, De Matteis F, King LJ. Biochem Pharmacol; 1988 May 15; 37(10):1981-90. PubMed ID: 3377806 [Abstract] [Full Text] [Related]
4. Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro. Uehleke H, Hellmer KH, Tabarelli-Poplawski S. Naunyn Schmiedebergs Arch Pharmacol; 1973 May 15; 279(1):39-52. PubMed ID: 4147966 [No Abstract] [Full Text] [Related]
5. The apparent loss of cytochrome P-450 associated with metabolic activation of carbon tetrachloride. Yamazoe Y, Sugiura M, Kamataki T, Kato R. Jpn J Pharmacol; 1979 Oct 15; 29(5):715-21. PubMed ID: 43918 [Abstract] [Full Text] [Related]
7. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride. Persson JO, Terelius Y, Ingelman-Sundberg M. Xenobiotica; 1990 Sep 15; 20(9):887-900. PubMed ID: 2122605 [Abstract] [Full Text] [Related]
8. NADPH-dependent and -independent loss of cytochrome P-450 in control and phenobarbital-induced rat hepatic microsomes incubated with carbon tetrachloride. Moody DE, Head B, Woo CH, James JL, Smuckler EA. Exp Mol Pathol; 1986 Jun 15; 44(3):318-28. PubMed ID: 3720920 [Abstract] [Full Text] [Related]
9. Suicide inactivation of cytochrome P-450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety. Labbe G, Descatoire V, Beaune P, Letteron P, Larrey D, Pessayre D. J Pharmacol Exp Ther; 1989 Sep 15; 250(3):1034-42. PubMed ID: 2506333 [Abstract] [Full Text] [Related]
10. Generation of carbon monoxide during the microsomal metabolism of methylenedioxyphenyl compounds. Yu LS, Wilkinson CF, Anders MW. Biochem Pharmacol; 1980 Apr 15; 29(8):1113-22. PubMed ID: 7387728 [No Abstract] [Full Text] [Related]
11. Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro. Involvement of non-carbon monoxide-forming mechanisms. Guzelian PS, Swisher RW. Biochem J; 1979 Dec 15; 184(3):481-9. PubMed ID: 120199 [Abstract] [Full Text] [Related]
12. The nature of the in vitro irreversible binding of carbon tetrachloride to microsomal lipids. Villarruel MC, Díaz Gómez MI, Castro JA. Toxicol Appl Pharmacol; 1975 Jul 15; 33(1):106-14. PubMed ID: 240222 [No Abstract] [Full Text] [Related]
13. Reduced glutathione protection against rat liver microsomal injury by carbon tetrachloride. Dependence on O2. Burk RF, Patel K, Lane JM. Biochem J; 1983 Dec 01; 215(3):441-5. PubMed ID: 6318726 [Abstract] [Full Text] [Related]
14. Diphasic binding of carbon monoxide with cytochrome P-450 of rat liver microsomes reduced by NADPH. Kamataki T, Kitagawa H. Chem Pharm Bull (Tokyo); 1974 Jan 01; 22(1):171-5. PubMed ID: 4151551 [No Abstract] [Full Text] [Related]
15. Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: role of cytochrome P-450. Sipes IG, Krishna G, Gillette JR. Life Sci; 1977 May 01; 20(9):1541-8. PubMed ID: 17803 [No Abstract] [Full Text] [Related]
16. Proceedings: Kinetics of the binding of carbon monoxide and oxygen to microsomal cytochrome P450 and the influence of substrates. Rösen P, Stier A. Naunyn Schmiedebergs Arch Pharmacol; 1974 May 01; 282(Suppl):suppl 282:R81. PubMed ID: 4276636 [No Abstract] [Full Text] [Related]
17. Formation of similar species to carbon monoxide during hepatic microsomal metabolism of cannabidiol on the basis of spectral interaction with cytochrome P-450. Watanabe K, Narimatsu S, Gohda H, Yamamoto I, Yoshimura H. Biochem Pharmacol; 1988 Dec 15; 37(24):4719-26. PubMed ID: 3202905 [Abstract] [Full Text] [Related]
18. Binding of 14 C-carbon tetrachloride to microsomal proteins in vitro and formation of CHC1 3 by reduced liver microsomes. Uehleke H, Hellmer KH, Tabarelli S. Xenobiotica; 1973 Jan 15; 3(1):1-11. PubMed ID: 4144825 [No Abstract] [Full Text] [Related]
19. [Formation of chloroform from carbon tetrachloride in liver microsomes, lipid peroxidation and destruction of cytochrome P-450]. Reiner O, Athanassopoulos S, Hellmer KH, Murray RE, Uehleke H. Arch Toxikol; 1972 Jan 15; 29(3):219-33. PubMed ID: 4404917 [No Abstract] [Full Text] [Related]
20. Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity. Shi X, Dalal NS. Arch Biochem Biophys; 1992 May 15; 295(1):70-5. PubMed ID: 1315507 [Abstract] [Full Text] [Related] Page: [Next] [New Search]