These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 7302676
1. Spinal cord monitoring of experimental incomplete cervical spinal cord injury: a preliminary report. Bohlman HH, Bahniuk E, Field G, Raskulinecz G. Spine (Phila Pa 1976); 1981; 6(5):428-36. PubMed ID: 7302676 [Abstract] [Full Text] [Related]
3. Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression. Carlson GD, Warden KE, Barbeau JM, Bahniuk E, Kutina-Nelson KL, Biro CL, Bohlman HH, LaManna JC. Spine (Phila Pa 1976); 1997 Jun 15; 22(12):1285-91. PubMed ID: 9201829 [Abstract] [Full Text] [Related]
4. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials. Carlson GD, Gorden CD, Nakazawa S, Wada E, Smith JS, LaManna JC. J Bone Joint Surg Am; 2003 Jan 15; 85(1):95-101. PubMed ID: 12533578 [Abstract] [Full Text] [Related]
5. Reversible spinal cord trauma: a model for electrical monitoring of spinal cord function. Croft TJ, Brodkey JS, Nulsen FE. J Neurosurg; 1972 Apr 15; 36(4):402-6. PubMed ID: 4335253 [No Abstract] [Full Text] [Related]
6. Perfusion-limited recovery of evoked potential function after spinal cord injury. Carlson GD, Gorden CD, Nakazowa S, Wada E, Warden K, LaManna JC. Spine (Phila Pa 1976); 2000 May 15; 25(10):1218-26. PubMed ID: 10806497 [Abstract] [Full Text] [Related]
7. Spinal cord monitoring: basic principles and experimental aspects. Tamaki T, Takano H, Takakuwa K. Cent Nerv Syst Trauma; 1985 May 15; 2(2):137-49. PubMed ID: 3830404 [Abstract] [Full Text] [Related]
8. A Mouse Model of Bilateral Cervical Contusion-Compression Spinal Cord Injury. Forgione N, Chamankhah M, Fehlings MG. J Neurotrauma; 2017 Mar 15; 34(6):1227-1239. PubMed ID: 27931169 [Abstract] [Full Text] [Related]
9. [Clinical application of the evoked spinal cord potentials. Part 1. Neurophysiological assessment of the evoked spinal cord potentials in experimental cord trauma - with reference to cord compression and ischemia (author's transl)]. Sudo N. Nihon Seikeigeka Gakkai Zasshi; 1980 Dec 15; 54(12):1631-47. PubMed ID: 7288222 [Abstract] [Full Text] [Related]
10. Development of a traumatic cervical dislocation spinal cord injury model with residual compression in the rat. Mattucci S, Speidel J, Liu J, Ramer MS, Kwon BK, Tetzlaff W, Oxland TR. J Neurosci Methods; 2019 Jul 01; 322():58-70. PubMed ID: 30951755 [Abstract] [Full Text] [Related]
11. Mechanical factors affecting recovery from incomplete cervical spinal cord injury: a preliminary report. Bohlman HH, Bahniuk E, Raskulinecz G, Field G. Johns Hopkins Med J; 1979 Sep 01; 145(3):115-25. PubMed ID: 470290 [No Abstract] [Full Text] [Related]
12. Experimental spinal cord injury produced by slow, graded compression. Alterations of cortical and spinal evoked potentials. Schramm J, Hashizume K, Fukushima T, Takahashi H. J Neurosurg; 1979 Jan 01; 50(1):48-57. PubMed ID: 758379 [No Abstract] [Full Text] [Related]
13. Effects of antithrombin III on spinal cord-evoked potentials and functional recovery after spinal cord injury in rats. Arai M, Goto T, Seichi A, Nakamura K. Spine (Phila Pa 1976); 2004 Feb 15; 29(4):405-12. PubMed ID: 15094537 [Abstract] [Full Text] [Related]
14. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen. Koozekanani SH, Vise WM, Hashemi RM, McGhee RB. J Neurosurg; 1976 Apr 15; 44(4):429-34. PubMed ID: 1255233 [Abstract] [Full Text] [Related]
15. The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury. Jones CF, Newell RS, Lee JH, Cripton PA, Kwon BK. Spine (Phila Pa 1976); 2012 Nov 01; 37(23):E1422-31. PubMed ID: 22869059 [Abstract] [Full Text] [Related]
16. A model of acute central cervical spinal cord injury syndrome combined with chronic injury in goats. Jiang H, Wang J, Xu B, Yang H, Zhu Q. Eur Spine J; 2017 Jan 01; 26(1):56-63. PubMed ID: 27116258 [Abstract] [Full Text] [Related]
17. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery. Carlson GD, Minato Y, Okada A, Gorden CD, Warden KE, Barbeau JM, Biro CL, Bahnuik E, Bohlman HH, Lamanna JC. J Neurotrauma; 1997 Dec 01; 14(12):951-62. PubMed ID: 9475376 [Abstract] [Full Text] [Related]
18. Spinal cord contusion injury: experimental dissociation of hemorrhagic necrosis and subacute loss of axonal conduction. Anderson TE. J Neurosurg; 1985 Jan 01; 62(1):115-9. PubMed ID: 3964842 [Abstract] [Full Text] [Related]
19. Neurophysiological monitoring during acute and progressive experimentally induced compression injury of the spinal cord in pigs. Montes E, Burgos J, Barrios C, de Blas G, Hevia E, Forteza J. Eur Spine J; 2017 Jan 01; 26(1):49-55. PubMed ID: 25862652 [Abstract] [Full Text] [Related]
20. Monitoring of anterior cervical spinal cord function. Shinomiya K, Mochida K, Komori H, Mutoh N, Okawa A. J Spinal Disord; 1996 Jun 01; 9(3):187-94. PubMed ID: 8854272 [Abstract] [Full Text] [Related] Page: [Next] [New Search]