These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


751 related items for PubMed ID: 7305997

  • 1. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S, Lorusso M, Izzo G, Capuano F.
    Biochem J; 1981 Feb 15; 194(2):395-406. PubMed ID: 7305997
    [Abstract] [Full Text] [Related]

  • 2. Kinetics of cytochrome b oxidation in antimycin-treated submitochondrial particles.
    Hatefi Y, Yagi T.
    Biochemistry; 1982 Dec 07; 21(25):6614-8. PubMed ID: 7150580
    [Abstract] [Full Text] [Related]

  • 3. The effect of membrane potential on the redox state of cytochrome b561 in antimycin-inhibited submitochondrial particles.
    Gopher A, Gutman M.
    J Bioenerg Biomembr; 1980 Dec 07; 12(5-6):349-67. PubMed ID: 7263619
    [Abstract] [Full Text] [Related]

  • 4. The mechanism of proton translocation by the cytochrome system of mitochondria. Characterization of proton-transfer reactions associated with oxidoreductions of terminal respiratory carriers.
    Papa S, Guerrieri F, Izzo G.
    Biochem J; 1983 Nov 15; 216(2):259-72. PubMed ID: 6318731
    [Abstract] [Full Text] [Related]

  • 5. [Differences in the action of antimycin and 2-nonyl-4-hydroxyquinoline N-oxide on oxidation-reduction of mitochondrial cytochromes b].
    Kunts VS, Kushnarenko SV, Konstantinov AA.
    Biokhimiia; 1983 Sep 15; 48(9):1456-62. PubMed ID: 6626606
    [Abstract] [Full Text] [Related]

  • 6. [Effect of 2,3-dimercaptopropanol on electron transfer in the energy coupling site 2 of the respiratory chain: evidence for the Q-cycle hypothesis].
    Ksenzenko MIa, Konstantinov AA.
    Biokhimiia; 1980 Feb 15; 45(2):343-54. PubMed ID: 6248133
    [Abstract] [Full Text] [Related]

  • 7. Membrane potential-linked reversed electron transfer in the beef heart cytochrome bc1 complex reconstituted into potassium-loaded phospholipid vesicles.
    Miki T, Miki M, Orii Y.
    J Biol Chem; 1994 Jan 21; 269(3):1827-33. PubMed ID: 8294431
    [Abstract] [Full Text] [Related]

  • 8. Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes.
    Tolkatchev D, Yu L, Yu CA.
    J Biol Chem; 1996 May 24; 271(21):12356-63. PubMed ID: 8647838
    [Abstract] [Full Text] [Related]

  • 9. [Localization of the redox-center of cytochrome b562 on the internal (M-) side of the mitochondrial membrane].
    Konstantinov AA, Kunts VS.
    Biokhimiia; 1984 Jun 24; 49(6):1046-9. PubMed ID: 6466738
    [Abstract] [Full Text] [Related]

  • 10. Cytochrome b reduction by hexaammineruthenium in mitochondria and submitochondrial particles. Evidence for heme b-562 localization at the M-side of the mitochondrial membrane.
    Kunz WS, Konstantinov A.
    FEBS Lett; 1984 Sep 17; 175(1):100-4. PubMed ID: 6479328
    [Abstract] [Full Text] [Related]

  • 11. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by delta micro H+.
    Papa S, Lorusso M, Boffoli D, Bellomo E.
    Eur J Biochem; 1983 Dec 15; 137(3):405-12. PubMed ID: 6319123
    [Abstract] [Full Text] [Related]

  • 12. The mechanism of transmembrane delta muH+ generation in mitochondria by cytochrome c oxidase.
    Lorusso M, Capuano F, Boffoli D, Stefanelli R, Papa S.
    Biochem J; 1979 Jul 15; 182(1):133-47. PubMed ID: 40546
    [Abstract] [Full Text] [Related]

  • 13. Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles.
    Nicholls P.
    Biochim Biophys Acta; 1976 Apr 09; 430(1):30-45. PubMed ID: 177075
    [Abstract] [Full Text] [Related]

  • 14. [Cytochromes b in submitochondrial particles from beef heart in the presence of redox succinate/fumarate buffer].
    Kamenskiĭ IuA, Konstantinov AA, Iasaĭtis AA.
    Biokhimiia; 1975 Apr 09; 40(5):1022-31. PubMed ID: 1212443
    [Abstract] [Full Text] [Related]

  • 15. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase.
    Moroney PM, Scholes TA, Hinkle PC.
    Biochemistry; 1984 Oct 09; 23(21):4991-7. PubMed ID: 6093868
    [Abstract] [Full Text] [Related]

  • 16. Kinetics of cytochrome b reduction in submitochondrial particles.
    Van Ark G, Raap AK, Berden JA, Slater EC.
    Biochim Biophys Acta; 1981 Aug 12; 637(1):34-42. PubMed ID: 7284355
    [Abstract] [Full Text] [Related]

  • 17. Myxothiazol, a new inhibitor of the cytochrome b-c1 segment of th respiratory chain.
    Thierbach G, Reichenbach H.
    Biochim Biophys Acta; 1981 Dec 14; 638(2):282-9. PubMed ID: 6274398
    [Abstract] [Full Text] [Related]

  • 18. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol.
    Papa S, Lorusso M, Guerrieri F.
    Biochim Biophys Acta; 1975 Jun 17; 387(3):425-40. PubMed ID: 237540
    [Abstract] [Full Text] [Related]

  • 19. Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient.
    Tahiliani AG.
    J Biol Chem; 1989 Nov 05; 264(31):18426-32. PubMed ID: 2553708
    [Abstract] [Full Text] [Related]

  • 20. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP.
    Biochem J; 1982 Apr 15; 204(1):49-59. PubMed ID: 6288019
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.