These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Differentiation of the bimodal stimuli in a frog's retina]. Izmaĭlov ChA, Zimachev MM. Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(1):65-79. PubMed ID: 17432319 [Abstract] [Full Text] [Related]
4. Electroretinogram in response to x-ray stimulation. BACHOFER CS, WITTRY SE. Science; 1961 Mar 03; 133(3453):642-4. PubMed ID: 13685657 [Abstract] [Full Text] [Related]
5. A simple and inexpensive light source for research in visual neuroscience. Demontis GC, Sbrana A, Gargini C, Cervetto L. J Neurosci Methods; 2005 Jul 15; 146(1):13-21. PubMed ID: 15935218 [Abstract] [Full Text] [Related]
6. Quantitative relationship of the scotopic and photopic ERG to photoreceptor cell loss in light damaged rats. Sugawara T, Sieving PA, Bush RA. Exp Eye Res; 2000 May 15; 70(5):693-705. PubMed ID: 10870528 [Abstract] [Full Text] [Related]
7. [The effect of light intensity and neostigmine on the electroretinogram of Drosophila melanogaster]. Creangă DE, Prelipcean C, Ursu D, Isac RM. Rev Med Chir Soc Med Nat Iasi; 1998 May 15; 102(1-2):89-92. PubMed ID: 10756819 [Abstract] [Full Text] [Related]
8. Comparison of stimulus energies required to elicit the ERG in response to x-rays and to light. BACHOFER CS, WITTRY SE. J Gen Physiol; 1962 Nov 15; 46(2):177-87. PubMed ID: 13965919 [Abstract] [Full Text] [Related]
9. The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Sandberg MA, Weigel-DiFranco C, Rosner B, Berson EL. Invest Ophthalmol Vis Sci; 1996 Jul 15; 37(8):1693-8. PubMed ID: 8675413 [Abstract] [Full Text] [Related]
11. Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish, Polyorchis penicillatus (Hydromedusae). Weber C. J Exp Zool; 1982 Nov 01; 223(3):231-43. PubMed ID: 6129281 [Abstract] [Full Text] [Related]
12. Wavelength and intensity dependence of retinal evoked responses using in vivo optic nerve recording. Finn WE, LoPresti PG. IEEE Trans Neural Syst Rehabil Eng; 2003 Dec 01; 11(4):372-6. PubMed ID: 14960112 [Abstract] [Full Text] [Related]
15. [The electroretinogram of the dark-adapted intact carp Carpio cyprinus L. to color substitution]. Chernorizov AM, Sokolov EN. Zh Vyssh Nerv Deiat Im I P Pavlova; 1995 Dec 01; 45(1):155-62. PubMed ID: 7754686 [Abstract] [Full Text] [Related]
16. The effects of forward light scattering on the multifocal electroretinogram. Tam A, Chan H, Brown B, Yap M. Curr Eye Res; 2004 Jan 01; 28(1):63-72. PubMed ID: 14704915 [Abstract] [Full Text] [Related]
17. [Variability of the parameters of oscillatory potentials of the human electroretinogram]. Fan XQ, Xi WQ, Li HS, Wang RZ, Zhang YY. Sheng Li Xue Bao; 1996 Oct 01; 48(5):497-500. PubMed ID: 9387784 [Abstract] [Full Text] [Related]
18. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Rizzo JF, Goldbaum S, Shahin M, Denison TJ, Wyatt J. Restor Neurol Neurosci; 2004 Oct 01; 22(6):429-43. PubMed ID: 15798362 [Abstract] [Full Text] [Related]
19. Electroretinography in patients with winter seasonal affective disorder. Hébert M, Beattie CW, Tam EM, Yatham LN, Lam RW. Psychiatry Res; 2004 Jun 30; 127(1-2):27-34. PubMed ID: 15261702 [Abstract] [Full Text] [Related]
20. Luminosity functions of human electroretinogram wavelets evoked with pattern-reversal stimuli. Korth M. Invest Ophthalmol Vis Sci; 1980 Jul 30; 19(7):810-6. PubMed ID: 7390728 [Abstract] [Full Text] [Related] Page: [Next] [New Search]