These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 7368270
1. Blood preservation. XXIX. Pyruvate maintains normal red cell 2,3-DPG for six weeks of storage in CPD-adenine. Dawson RB, Hershey RT, Myers CS. Transfusion; 1980; 20(2):218-23. PubMed ID: 7368270 [Abstract] [Full Text] [Related]
2. Blood storage XXIV: red blood cell 2,3-DPG and ATP maintenance for six weeks in CPD-adenine with higher phosphate, pyruvate, and dihydroxyacetone. Dawson RB. Transfusion; 1977; 17(3):242-7. PubMed ID: 867465 [Abstract] [Full Text] [Related]
3. Blood preservation 35. Red cell 2,3-DPG and ATP maintained by DHA-ascorbate-phosphate. Dawson RB, Hershey RT, Myers CS, Miller RM. Transfusion; 1981; 21(2):219-23. PubMed ID: 7222204 [Abstract] [Full Text] [Related]
4. Dihydroxyacetone, pyruvate, and phosphate effects on 2,3 DPG and ATP in citrate-phosphate-dextrose-adenine blood preservation. Dawson RB, Fagan DS, Meyer DR. Transfusion; 1984; 24(4):327-9. PubMed ID: 6464157 [Abstract] [Full Text] [Related]
5. Blood storage XXII. Improvement in red blood cell 2,3-DPG levels at six weeks by 20 mM PO4 in CPD-adenine-inosine. Dawson RB. Transfusion; 1976; 16(5):450-4. PubMed ID: 982537 [Abstract] [Full Text] [Related]
6. Red cell ATP and 2,3-diphosphoglycerate concentrations as a function of dihydroxyacetone supplementation of CPD adenine. Moore GL, Ledford ME, Brummell MR. Vox Sang; 1981; 41(1):11-7. PubMed ID: 7324438 [Abstract] [Full Text] [Related]
7. Blood preservation. XXXIV. DHA maintains 2,3-DPG and its adverse effect on ATP is reversed with extra phosphate. Dawson RB, Meyer DR, Hedian KA, Hershey RT, Myers CS. Transfusion; 1980; 20(3):311-5. PubMed ID: 7385325 [Abstract] [Full Text] [Related]
8. Blood preservation. XLIII. Studies on the ascorbate mechanisms of maintaining red cell 2,3-DPG. Dawson RB, Dabezies M, Hershey RT, Myers CS, Miller RM. Transfusion; 1980; 20(3):316-20. PubMed ID: 7385326 [Abstract] [Full Text] [Related]
9. Blood preservation using metabolic regulators and nutrients: XXI. Further studies on pyruvate and DHA (dihydroxyacetone). Dawson RB. Transfusion; 1976; 16(5):446-9. PubMed ID: 982536 [Abstract] [Full Text] [Related]
10. Blood storage XXIII: 2,3-DPG maintenance for six weeks in a CPD-adenine-inosine preservative with and without methylene blue. Dawson RB. Transfusion; 1977; 17(3):238-41. PubMed ID: 867464 [Abstract] [Full Text] [Related]
11. Blood preservation XXVII. Fructose and mannose maintain ATP and 2,3-DPG. Dawson RB, Levine Z, Zuck T, Hershey RT, Myers C. Transfusion; 1978; 18(3):347-52. PubMed ID: 664003 [Abstract] [Full Text] [Related]
14. Hemoglobin function in stored blood, XVII. Maintenance of red cell 2,3 DPG (function) and ATP (viability) for six weeks in ACD or CPD-adenine-inosine-methylene blue. Dawson RB. Rev Fr Transfus Immunohematol; 1976 Dec; 19(4):527-38. PubMed ID: 15309 [Abstract] [Full Text] [Related]
16. Changes of blood oxygen affinity in different CPD solutions during liquid storage. Wells RM, Hill RS, Woodfield DG. Transfusion; 1981 Dec; 21(6):709-14. PubMed ID: 7314220 [Abstract] [Full Text] [Related]
17. Metabolic manipulation of key glycolytic enzymes: a novel proposal for the maintenance of red cell 2,3-DPG and ATP levels during storage. Vora S. Biomed Biochim Acta; 1987 Dec; 46(2-3):S285-9. PubMed ID: 3593307 [Abstract] [Full Text] [Related]