These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 7380622

  • 1. Membrane alterations during cataract development in the Nakano mouse lens.
    Tanaka M, Russell P, Smith S, Uga S, Kuwabara T, Kinoshita JH.
    Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):619-29. PubMed ID: 7380622
    [Abstract] [Full Text] [Related]

  • 2. Distribution of gap junctions and square array junctions in the mammalian lens.
    Costello MJ, McIntosh TJ, Robertson JD.
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):975-89. PubMed ID: 2722452
    [Abstract] [Full Text] [Related]

  • 3. An ultrastructural analysis of plasma membrane in the U18666A cataract.
    Kuszak JR, Khan AR, Cenedella RJ.
    Invest Ophthalmol Vis Sci; 1988 Feb; 29(2):261-7. PubMed ID: 3338883
    [Abstract] [Full Text] [Related]

  • 4. Membrane interlocking domains in the lens.
    Kistler J, Gilbert K, Brooks HV, Jolly RD, Hopcroft DH, Bullivant S.
    Invest Ophthalmol Vis Sci; 1986 Oct; 27(10):1527-34. PubMed ID: 3759369
    [Abstract] [Full Text] [Related]

  • 5. Structural changes in lenses of mice lacking the gap junction protein connexin43.
    Gao Y, Spray DC.
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1198-209. PubMed ID: 9620080
    [Abstract] [Full Text] [Related]

  • 6. Gap junction formation during development of the mouse lens.
    Evans CW, Eastwood S, Rains J, Gruijters WT, Bullivant S, Kistler J.
    Eur J Cell Biol; 1993 Apr; 60(2):243-9. PubMed ID: 8330621
    [Abstract] [Full Text] [Related]

  • 7. Lens growth in the Nakano mouse.
    Fukui HN, Obazawa H, Kinoshita JH.
    Invest Ophthalmol; 1976 May; 15(5):422-5. PubMed ID: 1262174
    [Abstract] [Full Text] [Related]

  • 8. Lens structure in MIP-deficient mice.
    Al-Ghoul KJ, Kirk T, Kuszak AJ, Zoltoski RK, Shiels A, Kuszak JR.
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):714-30. PubMed ID: 12845708
    [Abstract] [Full Text] [Related]

  • 9. Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells.
    Xia CH, Cheng C, Huang Q, Cheung D, Li L, Dunia I, Benedetti LE, Horwitz J, Gong X.
    Exp Eye Res; 2006 Sep; 83(3):688-96. PubMed ID: 16696970
    [Abstract] [Full Text] [Related]

  • 10. Alterations in lens permeability during galactose cataract development in rat.
    Johnson MJ, Unakar NJ.
    Lens Eye Toxic Res; 1992 Sep; 9(2):93-113. PubMed ID: 1375837
    [Abstract] [Full Text] [Related]

  • 11. Membrane glycoproteins of Philly mouse lens.
    Garadi R, Reddy VN, Kador PF, Kinoshita JH.
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1321-4. PubMed ID: 6885317
    [Abstract] [Full Text] [Related]

  • 12. Ultrastructural, biochemical, and immunologic evidence of receptor-mediated endocytosis in the crystalline lens.
    Brown HG, Pappas GD, Ireland ME, Kuszak JR.
    Invest Ophthalmol Vis Sci; 1990 Dec; 31(12):2579-92. PubMed ID: 2176185
    [Abstract] [Full Text] [Related]

  • 13. Square arrays in early cortical lens opacities.
    Vrensen G, Van Marle J, Willekens B, Van Veen H.
    Invest Ophthalmol Vis Sci; 1990 Nov; 31(11):2476-81. PubMed ID: 2243013
    [Abstract] [Full Text] [Related]

  • 14. Lens development in a dominant X-linked congenital cataract of the mouse.
    Grimes PA, Favor J, Koeberlein B, Silvers WK, Fitzgerald PG, Stambolian D.
    Exp Eye Res; 1993 Nov; 57(5):587-94. PubMed ID: 8282045
    [Abstract] [Full Text] [Related]

  • 15. Biochemical and structural features of chick lens gap junctions.
    Kuszak JR, Alcalá J, Maisel H.
    Exp Eye Res; 1981 Aug; 33(2):157-66. PubMed ID: 7274350
    [No Abstract] [Full Text] [Related]

  • 16. Light scattering and morphology of cataract formation in transgenic mice containing the HIV-1 protease linked to the lens alpha A-crystallin promoter.
    Bettelheim FA, Churchill AC, Siew EL, Tumminia SJ, Russell P.
    Exp Eye Res; 1997 May; 64(5):667-74. PubMed ID: 9245895
    [Abstract] [Full Text] [Related]

  • 17. DeltaFosB-induced cataract.
    Kelz MB, Kuszak JR, Yang Y, Ma W, Steffen C, Al-Ghoul K, Zhang YJ, Chen J, Nestler EJ, Spector A.
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3523-38. PubMed ID: 11006248
    [Abstract] [Full Text] [Related]

  • 18. Targeted knockout of the mouse betaB2-crystallin gene (Crybb2) induces age-related cataract.
    Zhang J, Li J, Huang C, Xue L, Peng Y, Fu Q, Gao L, Zhang J, Li W.
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5476-83. PubMed ID: 18719080
    [Abstract] [Full Text] [Related]

  • 19. Structural and molecular biology of the eye lens membranes.
    Kistler J, Bullivant S.
    Crit Rev Biochem Mol Biol; 1989 Dec; 24(2):151-81. PubMed ID: 2651009
    [Abstract] [Full Text] [Related]

  • 20. Mechanism of Src kinase induction of cortical cataract following exposure to stress: destabilization of cell-cell junctions.
    Zhou J, Leonard M, Van Bockstaele E, Menko AS.
    Mol Vis; 2007 Jul 24; 13():1298-310. PubMed ID: 17679932
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.