These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
59 related items for PubMed ID: 7392901
1. Mechanics of translation in the fosbury-flop. Dapena J. Med Sci Sports Exerc; 1980; 12(1):37-44. PubMed ID: 7392901 [Abstract] [Full Text] [Related]
2. Mechanics of rotation in the Fosbury-flop. Dapena J. Med Sci Sports Exerc; 1980; 12(1):45-53. PubMed ID: 7392902 [Abstract] [Full Text] [Related]
3. A biomechanical analysis of the long-jump technique of elite female amputee athletes. Nolan L, Patritti BL, Simpson KJ. Med Sci Sports Exerc; 2006 Oct; 38(10):1829-35. PubMed ID: 17019306 [Abstract] [Full Text] [Related]
4. Why do high jumpers use a curved approach? Tan JC, Yeadon MR. J Sports Sci; 2005 Aug; 23(8):775-80. PubMed ID: 16195029 [Abstract] [Full Text] [Related]
5. Scaling and jumping: gravity loses grip on small jumpers. Scholz MN, Bobbert MF, Knoek van Soest AJ. J Theor Biol; 2006 Jun 21; 240(4):554-61. PubMed ID: 16332377 [Abstract] [Full Text] [Related]
6. The take-off phase in transtibial amputee high jump. Nolan L, Patritti BL. Prosthet Orthot Int; 2008 Jun 21; 32(2):160-71. PubMed ID: 18569884 [Abstract] [Full Text] [Related]
7. Principal component structure and sport-specific differences in the running one-leg vertical jump. Laffaye G, Bardy BG, Durey A. Int J Sports Med; 2007 May 21; 28(5):420-5. PubMed ID: 17111321 [Abstract] [Full Text] [Related]
8. [Double approach to the study of high jumping: attention demands and biomechanics]. Girouard Y, Dessureault J, Ferland P, Lafortune M. Can J Appl Sport Sci; 1981 Sep 21; 6(3):126-31. PubMed ID: 7296747 [Abstract] [Full Text] [Related]
9. Take-off analysis of the Olympic ski jumping competition (HS-106m). Virmavirta M, Isolehto J, Komi P, Schwameder H, Pigozzi F, Massazza G. J Biomech; 2009 May 29; 42(8):1095-101. PubMed ID: 19349050 [Abstract] [Full Text] [Related]
10. Characteristics of the early flight phase in the Olympic ski jumping competition. Virmavirta M, Isolehto J, Komi P, Brüggemann GP, Müller E, Schwameder H. J Biomech; 2005 Nov 29; 38(11):2157-63. PubMed ID: 16154402 [Abstract] [Full Text] [Related]
11. Optimal integration of gravity in trajectory planning of vertical pointing movements. Crevecoeur F, Thonnard JL, Lefèvre P. J Neurophysiol; 2009 Aug 29; 102(2):786-96. PubMed ID: 19458149 [Abstract] [Full Text] [Related]
12. Optimum take-off angle in the long jump. Linthorne NP, Guzman MS, Bridgett LA. J Sports Sci; 2005 Jul 29; 23(7):703-12. PubMed ID: 16195020 [Abstract] [Full Text] [Related]
13. Optimum take-off techniques for high and long jumps. Alexander RM. Philos Trans R Soc Lond B Biol Sci; 1990 Jul 30; 329(1252):3-10. PubMed ID: 1976267 [Abstract] [Full Text] [Related]
14. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. Pigeon P, Bortolami SB, DiZio P, Lackner JR. J Neurophysiol; 2003 Jan 30; 89(1):276-89. PubMed ID: 12522179 [Abstract] [Full Text] [Related]
15. Factors determining the preference of takeoff leg in jumping. Friberg O, Kvist M. Int J Sports Med; 1988 Oct 30; 9(5):349-52. PubMed ID: 3246472 [Abstract] [Full Text] [Related]
17. Becoming airborne without legs: the kinematics of take-off in a flying snake, Chrysopelea paradisi. Socha JJ. J Exp Biol; 2006 Sep 30; 209(Pt 17):3358-69. PubMed ID: 16916972 [Abstract] [Full Text] [Related]
18. Optimum take-off angle in the standing long jump. Wakai M, Linthorne NP. Hum Mov Sci; 2005 Feb 30; 24(1):81-96. PubMed ID: 15949583 [Abstract] [Full Text] [Related]
19. Jumping performance of froghopper insects. Burrows M. J Exp Biol; 2006 Dec 30; 209(Pt 23):4607-21. PubMed ID: 17114396 [Abstract] [Full Text] [Related]
20. Why not walk faster? Usherwood JR. Biol Lett; 2005 Sep 22; 1(3):338-41. PubMed ID: 17148201 [Abstract] [Full Text] [Related] Page: [Next] [New Search]