These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig. Patuzzi RB, Yates GK, Johnstone BM. Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964 [Abstract] [Full Text] [Related]
4. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Chan DK, Hudspeth AJ. Nat Neurosci; 2005 Feb; 8(2):149-55. PubMed ID: 15643426 [Abstract] [Full Text] [Related]
5. Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma. Syka J, Melichar I, Ulehlová L. Hear Res; 1981 Jul; 4(3-4):287-98. PubMed ID: 7263516 [Abstract] [Full Text] [Related]
10. Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Salt AN, Thalmann R, Marcus DC, Bohne BA. Hear Res; 1986 Jul; 23(2):141-51. PubMed ID: 3745017 [Abstract] [Full Text] [Related]
11. Ionic environment of cochlear hair cells. Anniko M, Wróblewski R. Hear Res; 1986 Jul; 22():279-93. PubMed ID: 3525484 [Abstract] [Full Text] [Related]
12. Mechanisms of endocochlear potential generation by stria vascularis. Salt AN, Melichar I, Thalmann R. Laryngoscope; 1987 Aug; 97(8 Pt 1):984-91. PubMed ID: 3613802 [Abstract] [Full Text] [Related]
13. A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics. Patuzzi RB. Hear Res; 1987 Aug; 30(1):73-82. PubMed ID: 3680056 [Abstract] [Full Text] [Related]
14. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. Kitajiri S, Miyamoto T, Mineharu A, Sonoda N, Furuse K, Hata M, Sasaki H, Mori Y, Kubota T, Ito J, Furuse M, Tsukita S. J Cell Sci; 2004 Oct 01; 117(Pt 21):5087-96. PubMed ID: 15456848 [Abstract] [Full Text] [Related]