These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 7400045
21. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Patuzzi RB, Yates GK, Johnstone BM. Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965 [Abstract] [Full Text] [Related]
23. Model of d.c. potentials in the cochlea: effects of voltage-dependent cilia stiffness. McMullen TA, Mountain DC. Hear Res; 1985 Feb; 17(2):127-41. PubMed ID: 4008351 [Abstract] [Full Text] [Related]
25. Energy dispersive X-ray analysis of intracochlear ion shifts produced by anoxia. Bone RC, Ryan AF. Laryngoscope; 1980 Jul; 90(7 Pt 1):1169-90. PubMed ID: 7392752 [No Abstract] [Full Text] [Related]
28. A comparison of compound action potential and cochlear microphonic two-tone suppression in the guinea pig. Remond MC, Harrison RV, Legouix JP. Hear Res; 1982 Sep; 8(1):83-91. PubMed ID: 7142036 [Abstract] [Full Text] [Related]
29. Comparison of the spectra of the cochlear microphonic and of the sound-elicited electrical impedance changes measured in scala media of the guinea pig. Hubbard AE, Geisler CD, Mountain DC. J Acoust Soc Am; 1979 Aug; 66(2):431-45. PubMed ID: 512204 [Abstract] [Full Text] [Related]
30. The influence of transducer operating point on distortion generation in the cochlea. Sirjani DB, Salt AN, Gill RM, Hale SA. J Acoust Soc Am; 2004 Mar; 115(3):1219-29. PubMed ID: 15058343 [Abstract] [Full Text] [Related]
32. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. Russell IJ, Sellick PM. J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955 [Abstract] [Full Text] [Related]
33. Two-tone interactions in the cochlear microphonic. Cheatham MA, Dallos P. Hear Res; 1982 Sep; 8(1):29-48. PubMed ID: 7142031 [Abstract] [Full Text] [Related]
34. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig. Mountain DC, Hubbard AE, Geisler CD. Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425 [Abstract] [Full Text] [Related]
36. Cochlear microphonic enhancement in two tone interactions. Nuttall AL, Dolan DF. Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959 [Abstract] [Full Text] [Related]
37. Cochlear function and sodium and potassium activated adenosine triphosphatase. Kuijpers W, Van der Vleuten AC, Bonting SL. Science; 1967 Aug 25; 157(3791):949-50. PubMed ID: 4378052 [Abstract] [Full Text] [Related]
38. Effects of carbon monoxide on cochlear electrophysiology and blood flow. Fechter LD, Thorne PR, Nuttall AL. Hear Res; 1987 Aug 25; 27(1):37-45. PubMed ID: 3583935 [Abstract] [Full Text] [Related]
39. Comparison of the effects of furosemide and ethacrynic acid upon the cochlear function in the guinea pig. Syka J, Melichar I. Scand Audiol Suppl; 1981 Aug 25; 14 Suppl():63-9. PubMed ID: 6949286 [No Abstract] [Full Text] [Related]
40. Cochlear potential difference between endolymph fluid and the hair cell's interior: a retold interpretation based on the Goldman equation. Kurbel S, Borzan V, Golem H, Dinjar K. Med Glas (Zenica); 2017 Feb 01; 14(1):8-15. PubMed ID: 28165435 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]