These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


106 related items for PubMed ID: 7400045

  • 41. [Endocochlear potential of the inner ear and its modification as affected by dihydrostreptomycin and ethacrynic acid].
    Sagalovich BM, Mazo IL.
    Vestn Otorinolaringol; 1982; (4):19-23. PubMed ID: 6181606
    [No Abstract] [Full Text] [Related]

  • 42. A correlation of the effects of normoxia, hyperoxia and anoxia on PO2 of endolymph and cochlear potentials.
    Prazma J, Fischer ND, Biggers WP, Ascher D.
    Hear Res; 1978 Oct; 1(1):3-9. PubMed ID: 757230
    [Abstract] [Full Text] [Related]

  • 43. Potentials of outer hair cells and their membrane properties in cationic environments.
    Tanaka Y, Asanuma A, Yanagisawa K.
    Hear Res; 1980 Jun; 2(3-4):431-8. PubMed ID: 7410247
    [Abstract] [Full Text] [Related]

  • 44. Suppression of the acoustically evoked auditory-nerve response by electrical stimulation in the cochlea of the guinea pig.
    Stronks HC, Versnel H, Prijs VF, Klis SF.
    Hear Res; 2010 Jan; 259(1-2):64-74. PubMed ID: 19840841
    [Abstract] [Full Text] [Related]

  • 45. Frequency composition of spontaneous cochlear emissions.
    Fritze W, Köhler W.
    Arch Otorhinolaryngol; 1985 Jan; 242(1):43-8. PubMed ID: 4038149
    [Abstract] [Full Text] [Related]

  • 46. Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: function and morphology.
    Chen GD, Li M, Tanaka C, Bielefeld EC, Hu BH, Kermany MH, Salvi R, Henderson D.
    Hear Res; 2009 Feb; 248(1-2):39-47. PubMed ID: 19111601
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies.
    Salt AN, DeMott JE.
    J Acoust Soc Am; 1999 Aug; 106(2):847-56. PubMed ID: 10462790
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability.
    Patuzzi RB, Thompson ML.
    Hear Res; 1991 Jul; 54(1):45-58. PubMed ID: 1917716
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
    Salt AN, Lichtenhan JT, Gill RM, Hartsock JJ.
    J Acoust Soc Am; 2013 Mar; 133(3):1561-71. PubMed ID: 23464026
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Effects of pure tone on endocochlear potential and potassium ion concentration in the guinea pig cochlea.
    Vassout P.
    Acta Otolaryngol; 1984 Mar; 98(3-4):199-203. PubMed ID: 6496057
    [Abstract] [Full Text] [Related]

  • 60. Inter- and intracompartmental osmotic gradients within the rat cochlea.
    Sterkers O, Ferrary E, Amiel C.
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F602-6. PubMed ID: 6496688
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.