These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 7410375

  • 41. System y+L: the broad scope and cation modulated amino acid transporter.
    Devés R, Angelo S, Rojas AM.
    Exp Physiol; 1998 Mar; 83(2):211-20. PubMed ID: 9568481
    [Abstract] [Full Text] [Related]

  • 42. Carbon-11 choline: synthesis, purification, and brain uptake inhibition by 2-dimethylaminoethanol.
    Rosen MA, Jones RM, Yano Y, Budinger TF.
    J Nucl Med; 1985 Dec; 26(12):1424-8. PubMed ID: 3877796
    [Abstract] [Full Text] [Related]

  • 43. Saturable and non-saturable components of choline transport in Plasmodium-infected mammalian erythrocytes: possible role of experimental conditions.
    Ancelin ML, Vial HJ.
    Biochem J; 1992 Apr 15; 283 ( Pt 2)(Pt 2):619-21. PubMed ID: 1575705
    [No Abstract] [Full Text] [Related]

  • 44. [Inhibition of cholinesterases by quaternary phosphonium compounds].
    Brestkin AP, Zhukovskiĭ IuG, Kolchanova NA, Mirzabaev EA, Rozengart EV.
    Ukr Biokhim Zh (1978); 1986 Apr 15; 58(2):26-30. PubMed ID: 3705200
    [Abstract] [Full Text] [Related]

  • 45. Measurement of choline concentration and transport in human erythrocytes by 1H NMR: comparison of normal blood and that from lithium-treated psychiatric patients.
    Jones AJ, Kuchel PW.
    Clin Chim Acta; 1980 May 21; 104(1):77-85. PubMed ID: 7389126
    [Abstract] [Full Text] [Related]

  • 46. [Inhibition of cholinesterases by aziridinium derivatives of polymethylene bischloroethylamines].
    Volkova RI, Kochetova LM.
    Bioorg Khim; 1983 Jul 21; 9(7):926-35. PubMed ID: 6679787
    [Abstract] [Full Text] [Related]

  • 47. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step.
    Angelo S, Devés R.
    J Membr Biol; 1994 Aug 21; 141(2):183-92. PubMed ID: 7807519
    [Abstract] [Full Text] [Related]

  • 48. Choline activation of lithium transport.
    Carper WR, Stoddard DD, Martin DF.
    Experientia; 1973 Oct 15; 29(10):1249-50. PubMed ID: 4758930
    [No Abstract] [Full Text] [Related]

  • 49. The effects of inhibiting choline dehydrogenase on choline metabolism in mice.
    Barlow P, Marchbanks RM.
    Biochem Pharmacol; 1985 Sep 01; 34(17):3117-22. PubMed ID: 3899120
    [Abstract] [Full Text] [Related]

  • 50. Uptake of chloroquine by human erythrocytes.
    Ferrari V, Cutler DJ.
    Biochem Pharmacol; 1990 Feb 15; 39(4):753-62. PubMed ID: 2306282
    [Abstract] [Full Text] [Related]

  • 51. Two pathways for choline transport in eel erythrocytes: a saturable carrier and a volume-activated channel.
    Joyner SE, Kirk K.
    Am J Physiol; 1994 Sep 15; 267(3 Pt 2):R773-9. PubMed ID: 8092322
    [Abstract] [Full Text] [Related]

  • 52. [A comparative study of the interaction of the cholinesterase from the brain of the cabbage fly, the acetylcholinesterase from bovine erythrocytes and the butyrylcholinesterase from horse blood serum with organophosphorus inhibitors].
    Grigor'eva GM, Krasnova TI, Khovanskikh AE.
    Zh Evol Biokhim Fiziol; 1990 Sep 15; 26(2):145-50. PubMed ID: 2375193
    [Abstract] [Full Text] [Related]

  • 53. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase.
    Saxena A, Raveh L, Ashani Y, Doctor BP.
    Biochemistry; 1997 Jun 17; 36(24):7481-9. PubMed ID: 9200697
    [Abstract] [Full Text] [Related]

  • 54. alpha,beta-Dehydrophenylalanine choline esters, a new class of reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase.
    Grigoryan HA, Hambardzumyan AA, Mkrtchyan MV, Topuzyan VO, Halebyan GP, Asatryan RS.
    Chem Biol Interact; 2008 Jan 10; 171(1):108-16. PubMed ID: 17980356
    [Abstract] [Full Text] [Related]

  • 55. [A kinetic study of the blood serum cholinesterase activity in the freshwater fish Abramis ballerus].
    Zhukovskiĭ IuG, Kutsenko SA, Kuznetsova LP, Sochilina EE, Dmitrieva EN, Fartseĭger NL, Tonkopiĭ VD, Korkishko NN, Kozlovskaia VI, Fel'd VE.
    Zh Evol Biokhim Fiziol; 1994 Jan 10; 30(2):177-84. PubMed ID: 7817653
    [Abstract] [Full Text] [Related]

  • 56. Choline flux in human erythrocytes.
    Jope RS, Wright SM, Jenden DJ.
    Psychopharmacol Bull; 1984 Jan 10; 20(4):674-80. PubMed ID: 6494393
    [No Abstract] [Full Text] [Related]

  • 57. Choline transport in collecting duct cells isolated from the rat renal inner medulla.
    Bevan C, Kinne RK.
    Pflugers Arch; 1990 Nov 10; 417(3):324-8. PubMed ID: 2274417
    [Abstract] [Full Text] [Related]

  • 58. The effects of Al3+, Cd2+ and Mn2+ on human erythrocyte choline transport.
    King RG, Sharp JA, Boura AL.
    Biochem Pharmacol; 1983 Dec 01; 32(23):3611-7. PubMed ID: 6140015
    [Abstract] [Full Text] [Related]

  • 59. [Kinetics of hydrolysis of the phenyl analog of acetylcholine under the action of cholinesterase from horse serum and acetylcholinesterase from bovine erythrocytes].
    Brestkin AP, Brik IL, Teplov NE.
    Biokhimiia; 1968 Dec 01; 33(5):1059-68. PubMed ID: 5703735
    [No Abstract] [Full Text] [Related]

  • 60. Kinetics of choline uptake into isolated rat forebrain microvessels: evidence of endocrine modulation.
    Shimon M, Egozi Y, Kloog Y, Sokolovsky M, Cohen S.
    J Neurochem; 1988 Jun 01; 50(6):1719-24. PubMed ID: 3373211
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.