These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Evidence for new metabolic pathways of chloramphenicol in the duck. Cravedi JP, Baradat M, Debrauwer L, Alary J, Tulliez J, Bories G. Drug Metab Dispos; 1994; 22(4):578-83. PubMed ID: 7956733 [Abstract] [Full Text] [Related]
7. Mechanism of glutathione-dependent dechlorination of chloramphenicol and thiamphenicol by cytosol of rat liver. Martin JL, Gross BJ, Morris P, Pohl LR. Drug Metab Dispos; 1980; 8(6):371-5. PubMed ID: 6109602 [Abstract] [Full Text] [Related]
8. Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes. Pohl LR, Krishna G. Biochem Pharmacol; 1978 Feb 01; 27(3):335-41. PubMed ID: 619915 [No Abstract] [Full Text] [Related]
9. Glutathione-dependent dechlorination of chloramphenicol by cytosol of rat liver. Martin JL, George JW, Pohl LR. Drug Metab Dispos; 1980 Feb 01; 8(2):93-7. PubMed ID: 6103795 [Abstract] [Full Text] [Related]
10. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Ambrose PJ. Clin Pharmacokinet; 1984 Feb 01; 9(3):222-38. PubMed ID: 6375931 [Abstract] [Full Text] [Related]
11. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes. Morris PL, Burke TR, George JW, Pohl LR. Drug Metab Dispos; 1982 Feb 01; 10(5):439-45. PubMed ID: 6128189 [Abstract] [Full Text] [Related]
13. Identification and characterization of two chloramphenicol glucuronides from the in vitro glucuronidation of chloramphenicol in human liver microsomes. Chen M, Howe D, Leduc B, Kerr S, Williams DA. Xenobiotica; 2007 Sep 01; 37(9):954-71. PubMed ID: 17896323 [Abstract] [Full Text] [Related]
14. Reductive dechlorination of chloramphenicol by rat liver microsomes. Morris PL, Burke TR, Phol LR. Drug Metab Dispos; 1983 Sep 01; 11(2):126-30. PubMed ID: 6133716 [Abstract] [Full Text] [Related]
17. Simultaneous measurement of chloramphenicol and chloramphenicol succinate by high-performance liquid chromatography. Aravind MK, Miceli JN, Kauffman RE, Strebel LE, Done AK. J Chromatogr; 1980 Nov 14; 221(1):176-81. PubMed ID: 7451621 [No Abstract] [Full Text] [Related]
18. Conformation and quantification of chloramphenicol in cow's urine, muscle and eggs by electron capture negative ion chemical ionization gas chromatography/mass spectrometry. van der Heeft E, de Jong AP, van Ginkel LA, van Rossum HJ, Zomer G. Biol Mass Spectrom; 1991 Dec 14; 20(12):763-70. PubMed ID: 1812985 [Abstract] [Full Text] [Related]
19. A reappraisal of chloramphenicol metabolism: detection and quantification of metabolites in the sera of children. Holt DE, Hurley R, Harvey D. J Antimicrob Chemother; 1995 Jan 14; 35(1):115-27. PubMed ID: 7768759 [Abstract] [Full Text] [Related]
20. Comprehensive validation of a liquid chromatography-tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation. Gaugain M, Chotard MP, Hurtaud-Pessel D, Verdon E. J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb 01; 1011():145-50. PubMed ID: 26773882 [Abstract] [Full Text] [Related] Page: [Next] [New Search]