These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 7439192

  • 1. Optical study of the light-induced protonation changes associated with the metarhodopson II intermediate in rod-outer-segment membranes.
    Bennett N.
    Eur J Biochem; 1980 Oct; 111(1):99-103. PubMed ID: 7439192
    [Abstract] [Full Text] [Related]

  • 2. The decay of metarhodopsin II in cattle rod outer segment membranes: protonation and spectral changes.
    Bennett N.
    Biochem Biophys Res Commun; 1980 Oct 31; 96(4):1695-701. PubMed ID: 7447949
    [No Abstract] [Full Text] [Related]

  • 3. Cyanine dye measurement of a light-induced transient membrane potential associated with the metarhodopsin II intermediate in rod-outer-segment membranes.
    Bennett N, Michel-Villaz M, Dupont Y.
    Eur J Biochem; 1980 Oct 31; 111(1):105-10. PubMed ID: 7053075
    [Abstract] [Full Text] [Related]

  • 4. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions.
    Parkes JH, Liebman PA.
    Biochemistry; 1984 Oct 09; 23(21):5054-61. PubMed ID: 6498176
    [Abstract] [Full Text] [Related]

  • 5. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D, Hofmann KP.
    FEBS Lett; 1981 Dec 28; 136(2):201-7. PubMed ID: 7327258
    [No Abstract] [Full Text] [Related]

  • 6. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa, Fesenko EE.
    Mol Biol (Mosk); 1981 Dec 28; 15(6):1276-85. PubMed ID: 7322116
    [Abstract] [Full Text] [Related]

  • 7. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes.
    Hofmann KP, Emeis D, Schnetkamp PP.
    Biochim Biophys Acta; 1983 Oct 31; 725(1):60-70. PubMed ID: 6313051
    [Abstract] [Full Text] [Related]

  • 8. On the relation between rapid light-induced Ca2+ release and proton uptake in rod outer segment disk membranes.
    Schnetkamp PP, Kaupp UB.
    Mol Cell Biochem; 1983 Oct 31; 52(1):37-48. PubMed ID: 6306440
    [Abstract] [Full Text] [Related]

  • 9. Evidence for differently protonated forms of metarhodopsin II as intermediates in the decay of membrane-bound cattle rhodopsin.
    Bennett N.
    Biochem Biophys Res Commun; 1978 Jul 28; 83(2):457-65. PubMed ID: 29625
    [No Abstract] [Full Text] [Related]

  • 10. Light-induced interaction between rhodopsin and the GTP-binding protein. Metarhodopsin II is the major photoproduct involved.
    Bennett N, Michel-Villaz M, Kühn H.
    Eur J Biochem; 1982 Sep 28; 127(1):97-103. PubMed ID: 6291939
    [Abstract] [Full Text] [Related]

  • 11. Metarhodopsin I/metarhodopsin II transition triggers light-induced change in calcium binding at rod disk membranes.
    Kaupp UB, Schnetkamp PP, Junge W.
    Nature; 1980 Aug 07; 286(5773):638-40. PubMed ID: 6772971
    [Abstract] [Full Text] [Related]

  • 12. On the correlation between light-induced protein fluorescence changes and the formation of metarhodopsin III465 in bovine photoreceptor disk membranes.
    Chiba T, Asai H, Suzuki H.
    Biochem Biophys Res Commun; 1980 Feb 12; 92(3):853-9. PubMed ID: 7362609
    [No Abstract] [Full Text] [Related]

  • 13. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium.
    Emeis D, Kühn H, Reichert J, Hofmann KP.
    FEBS Lett; 1982 Jun 21; 143(1):29-34. PubMed ID: 6288450
    [No Abstract] [Full Text] [Related]

  • 14. Energetics of primary processes in visula escitation: photocalorimetry of rhodopsin in rod outer segment membranes.
    Cooper A, Converse CA.
    Biochemistry; 1976 Jul 13; 15(14):2970-8. PubMed ID: 8077
    [Abstract] [Full Text] [Related]

  • 15. Proton uptake by light induced interaction between rhodopsin and G-protein.
    Schleicher A, Hofmann KP.
    Z Naturforsch C Biosci; 1985 Jul 13; 40(5-6):400-5. PubMed ID: 2992179
    [Abstract] [Full Text] [Related]

  • 16. Effects of lipid environment on the light-induced conformational changes of rhodopsin. 1. Absence of metarhodopsin II production in dimyristoylphosphatidylcholine recombinant membranes.
    Baldwin PA, Hubbell WL.
    Biochemistry; 1985 May 21; 24(11):2624-32. PubMed ID: 4027217
    [Abstract] [Full Text] [Related]

  • 17. Effects of volatile anesthetics on light-induced proton uptake of rhodopsin in bovine rod outer segment disk membrane.
    Mashimo T, Tashiro C, Yoshiya I.
    Anesthesiology; 1984 Oct 21; 61(4):439-43. PubMed ID: 6091504
    [Abstract] [Full Text] [Related]

  • 18. Temperature dependence of G-protein activation in photoreceptor membranes. Transient extra metarhodopsin II on bovine disk membranes.
    Kohl B, Hofmann KP.
    Biophys J; 1987 Aug 21; 52(2):271-7. PubMed ID: 3117126
    [Abstract] [Full Text] [Related]

  • 19. The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retinas.
    Attwood PV, Gutfreund H.
    FEBS Lett; 1980 Oct 06; 119(2):323-6. PubMed ID: 7428948
    [No Abstract] [Full Text] [Related]

  • 20. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.
    Arnis S, Hofmann KP.
    Proc Natl Acad Sci U S A; 1993 Aug 15; 90(16):7849-53. PubMed ID: 8356093
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.