These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
353 related items for PubMed ID: 7442710
1. Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria. Köhler P, Bachmann R. Mol Biochem Parasitol; 1980 Apr; 1(2):75-90. PubMed ID: 7442710 [Abstract] [Full Text] [Related]
2. Succinate-dependent energy generation in Ascaris suum mitochondria. Campbell T, Rubin N, Komuniecki R. Mol Biochem Parasitol; 1989 Feb; 33(1):1-12. PubMed ID: 2710162 [Abstract] [Full Text] [Related]
3. Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria. Komuniecki R, Komuniecki PR, Saz HJ. J Parasitol; 1981 Oct; 67(5):601-8. PubMed ID: 7299574 [Abstract] [Full Text] [Related]
4. Demonstration and possible function of NADH:NAD+ transhydrogenase from ascaris muscle mitochondria. Köhler P, Saz HJ. J Biol Chem; 1976 Apr 25; 251(8):2217-25. PubMed ID: 1262321 [Abstract] [Full Text] [Related]
5. Mitochondrial hydrogen peroxide formation and the fumarate reductase of Hymenolepis diminuta. Fioravanti CF, Reisig JM. J Parasitol; 1990 Aug 25; 76(4):457-63. PubMed ID: 2380854 [Abstract] [Full Text] [Related]
6. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation. Dawson AG, Chappell JB. Biochem J; 1978 Feb 15; 170(2):395-405. PubMed ID: 205211 [Abstract] [Full Text] [Related]
7. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II. Kita K, Takamiya S, Furushima R, Ma YC, Suzuki H, Ozawa T, Oya H. Biochim Biophys Acta; 1988 Sep 14; 935(2):130-40. PubMed ID: 2843227 [Abstract] [Full Text] [Related]
10. Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrome b-558. Takamiya S, Furushima R, Oya H. Biochim Biophys Acta; 1986 Jan 28; 848(1):99-107. PubMed ID: 3753651 [Abstract] [Full Text] [Related]
11. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism. Rustin P, Lance C. Biochem J; 1991 Feb 15; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241 [Abstract] [Full Text] [Related]
12. Succinate-dependent metabolism in Trypanosoma cruzi epimastigotes. Denicola-Seoane A, Rubbo H, Prodanov E, Turrens JF. Mol Biochem Parasitol; 1992 Aug 15; 54(1):43-50. PubMed ID: 1518531 [Abstract] [Full Text] [Related]
13. Oxidation-reduction potentials of cytochromes in Ascaris muscle mitochondria: high-redox-potential cytochrome b558 in complex II (succinate-ubiquinone reductase). Takamiya S, Kita K, Matsuura K, Furushima R, Oya H. Biochem Int; 1990 Sep 15; 21(6):1073-80. PubMed ID: 2080921 [Abstract] [Full Text] [Related]
14. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies. Schwartz AC, Sporkenbach J. Arch Microbiol; 1975 Mar 10; 102(3):261-73. PubMed ID: 168827 [Abstract] [Full Text] [Related]
16. A Sodium-Translocating Module Linking Succinate Production to Formation of Membrane Potential in Prevotella bryantii. Schleicher L, Trautmann A, Stegmann DP, Fritz G, Gätgens J, Bott M, Hein S, Simon J, Seifert J, Steuber J. Appl Environ Microbiol; 2021 Oct 14; 87(21):e0121121. PubMed ID: 34469197 [Abstract] [Full Text] [Related]