These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 7458535

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation.
    Dopson M, Lindström EB, Hallberg KB.
    Extremophiles; 2002 Apr; 6(2):123-9. PubMed ID: 12013432
    [Abstract] [Full Text] [Related]

  • 3. Energy conservation in Thiobacillus neapolitanus C6 sulphide and sulphite oxidation.
    Drozd JW.
    J Gen Microbiol; 1977 Jan; 98(1):309-12. PubMed ID: 188974
    [No Abstract] [Full Text] [Related]

  • 4. Electron transfer during sulphide and sulphite oxidation by Thiobacillus concretivorus.
    Moriarty DJ, Nicholas DJ.
    Biochim Biophys Acta; 1970 Aug 04; 216(1):130-8. PubMed ID: 5497181
    [No Abstract] [Full Text] [Related]

  • 5. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP.
    BeltrandelRio H, Wilson JE.
    Arch Biochem Biophys; 1991 Apr 04; 286(1):183-94. PubMed ID: 1897945
    [Abstract] [Full Text] [Related]

  • 6. Electron transport-linked compared with proton-induced ATP generation in Thiobacillus novellus.
    Cole JS, Aleem MI.
    Proc Natl Acad Sci U S A; 1973 Dec 04; 70(12):3571-5. PubMed ID: 4357881
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur.
    Kelly DP.
    Philos Trans R Soc Lond B Biol Sci; 1982 Sep 13; 298(1093):499-528. PubMed ID: 6127738
    [Abstract] [Full Text] [Related]

  • 9. Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans.
    Peeters T, Aleem MI.
    Arch Mikrobiol; 1970 Sep 13; 71(4):319-30. PubMed ID: 4316972
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans.
    Hoor AT.
    Antonie Van Leeuwenhoek; 1976 Sep 13; 42(4):483-92. PubMed ID: 1087862
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF, Vinogradov SA.
    J Appl Physiol (1985); 2014 Dec 15; 117(12):1431-9. PubMed ID: 25324518
    [Abstract] [Full Text] [Related]

  • 16. Enzymic comparisons of the inorganic sulfur metabolism in autotrophic and heterotrophic Thiobacillus ferrooxidans.
    Tuovinen PH, Kelley BC, Nicholas DJ.
    Can J Microbiol; 1976 Jan 15; 22(1):109-13. PubMed ID: 175905
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Electron transport and coupled phosphorylation in the chemoautotroph Thiobacillus neapolitanus.
    Ross AJ, Schoenhoff RL, Aleem MI.
    Biochem Biophys Res Commun; 1968 Jul 26; 32(2):301-6. PubMed ID: 5672145
    [No Abstract] [Full Text] [Related]

  • 19. Measurement of microsomal ATPase activities: a comparison between the inorganic phosphate-release assay and the NADH-coupled enzyme assay.
    Missiaen L, Wuytack F, Kanmura Y, Van Belle H, Wynants J, Minten J, Casteels R.
    Biochim Biophys Acta; 1989 Jan 27; 990(1):40-4. PubMed ID: 2536560
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.