These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 7463722
1. Effects of piridoxilate, a glyoxylic acid derivative, on the energy metabolism of the heart. Otorii T, Katano Y, Takeda K, Imai S. Jpn Heart J; 1980 Nov; 21(6):845-57. PubMed ID: 7463722 [Abstract] [Full Text] [Related]
2. Studies on the effects of piridoxilate, a glyoxylic acid derivative, on the mammalian system, heart and muscle under normal or deficient oxygen supply. Attempts towards a biochemical approach. Fourneau JP, Davy M, Clément M, Ransom M, Darmois F, Lamarche M. Arzneimittelforschung; 1974 Jan; 24(1):27-34. PubMed ID: 4406105 [No Abstract] [Full Text] [Related]
3. [Influence of piridoxilate on the energy metabolism of normothermic ischemic organs in the rat]. Fischer JH. Arzneimittelforschung; 1980 Jan; 30(12):2132-4. PubMed ID: 7194075 [Abstract] [Full Text] [Related]
4. Effects of catecholamines on myocardial energy metabolism as studied by an organ redoximeter. Imai S, Otorii T, Takeda K, Katano Y, Nakagawa Y. Recent Adv Stud Cardiac Struct Metab; 1980 Jan; 11():335-41. PubMed ID: 201989 [Abstract] [Full Text] [Related]
5. [Protective effect of pyridoxilate on the hypoxic myocardium. Experimental studies]. Moret PR, Lutzen U. Schweiz Med Wochenschr; 1977 Nov 05; 107(44):1585-6. PubMed ID: 918622 [Abstract] [Full Text] [Related]
6. Piridoxilate-associated nephrocalcinosis: a new form of chronic oxalate nephropathy. Vigeral P, Kenouch S, Chauveau D, Mougenot B, Méry JP. Nephrol Dial Transplant; 1987 Nov 05; 2(4):275-8. PubMed ID: 3118272 [Abstract] [Full Text] [Related]
7. Potentiation by piridoxilate of the synthesis of hippurate from benzoate in isolated rat hepatocytes. An approach to the determination of new pathways of nitrogen excretion in inborn errors of urea synthesis. Coude FX, Coude M, Grimber G, Pelet A, Charpentier C. Clin Chim Acta; 1984 Jan 31; 136(2-3):211-7. PubMed ID: 6692575 [Abstract] [Full Text] [Related]
8. [Using the isolated atrial preparation of the guinea-pig and the canine heart lung preparation (HLP) supported by a donor, the effects of guanfacine on the heart, coronary circulation and myocardial energy metabolism were studied and compared with those of clonidine (author's transl)]. Katano Y, Nakagawa Y, Shimamoto N, Sakai K, Otorii T, Imai S. Nihon Yakurigaku Zasshi; 1980 Sep 31; 76(5):281-92. PubMed ID: 7009344 [Abstract] [Full Text] [Related]
9. Effects of catecholamines on the myocardial redox potential. Otorii T, Takeda K, Katano Y, Nakagawa Y, Imai S. Jpn J Pharmacol; 1977 Aug 31; 27(4):553-62. PubMed ID: 21984 [No Abstract] [Full Text] [Related]
10. Effects of etafenone on myocardial energy metabolism as studied by an organ redoximeter and biochemical analyses. Etoh Y, Nakazawa M, Imai S. Jpn J Pharmacol; 1984 Jul 31; 35(3):229-35. PubMed ID: 6482088 [Abstract] [Full Text] [Related]
12. Specific effects of nitroprusside on myocardial O2 balance following coronary ligation in the dog heart. Acad B, Sonn J, Furman E, Scheinowitz M, Kedem J. J Cardiovasc Pharmacol; 1987 Jan 31; 9(1):79-86. PubMed ID: 2434799 [Abstract] [Full Text] [Related]
13. Effect of coronary vasodilation produced by hypopnea upon regional myocardial oxygen balance. Sonn J, Acad B, Mayevsky A, Kedem J. Arch Int Physiol Biochim; 1981 Dec 31; 89(5):445-55. PubMed ID: 6176201 [Abstract] [Full Text] [Related]
14. Glyoxylic acid prevents NAD+ and NADH depletion in K562 cells cultured at limiting dilution. Zocchi E, Polvani C, Guida L. Biochem Biophys Res Commun; 1990 Nov 30; 173(1):179-85. PubMed ID: 2256912 [Abstract] [Full Text] [Related]
15. Dichloroacetate enhanced myocardial functional recovery post-ischemia : ATP and NADH recovery. Wahr JA, Olszanski D, Childs KF, Bolling SF. J Surg Res; 1996 Jun 30; 63(1):220-4. PubMed ID: 8661201 [Abstract] [Full Text] [Related]
16. Differential effects of various inotropic agents on the intracellular NADH redox level in the in vivo dog heart. Acad BA, Guggenheimer E, Sonn J, Kedem J. J Cardiovasc Pharmacol; 1983 Jun 30; 5(2):284-90. PubMed ID: 6188904 [Abstract] [Full Text] [Related]
17. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan 30; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
18. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC. J Physiol; 2007 Mar 15; 579(Pt 3):811-21. PubMed ID: 17185335 [Abstract] [Full Text] [Related]
19. Multiparameter monitoring and analysis of in vivo ischemic and hypoxic heart. Osbakken M, Mayevsky A. J Basic Clin Physiol Pharmacol; 1996 Mar 15; 7(2):97-113. PubMed ID: 8876429 [Abstract] [Full Text] [Related]
20. A fluorometric study of oxidative metabolism in the in vivo canine heart during acute ischemia and hypoxia. Mills SA, Jöbsis FF, Seaber AV. Ann Surg; 1977 Aug 15; 186(2):193-200. PubMed ID: 889364 [Abstract] [Full Text] [Related] Page: [Next] [New Search]