These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 7470495

  • 1. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles.
    Moore AL, Bonner WD.
    Biochim Biophys Acta; 1981 Jan 14; 634(1):117-28. PubMed ID: 7470495
    [Abstract] [Full Text] [Related]

  • 2. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C, Michejda JW, Block M, Lauquin GJ, Vignais PV.
    Biochim Biophys Acta; 1979 Apr 11; 546(1):157-70. PubMed ID: 36139
    [No Abstract] [Full Text] [Related]

  • 3. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles.
    Seren S, Caporin G, Galiazzo F, Lippe G, Ferguson SJ, Sorgato MC.
    Eur J Biochem; 1985 Oct 15; 152(2):373-9. PubMed ID: 2865136
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC, Ferguson SJ, Kell DB, John P.
    Biochem J; 1978 Jul 15; 174(1):237-56. PubMed ID: 212021
    [Abstract] [Full Text] [Related]

  • 6. Clarification of factors influencing the nature and magnitude of the protonmotive force in bovine heart submitochondrial particles.
    Branca D, Ferguson SJ, Sorgato MC.
    Eur J Biochem; 1981 May 15; 116(2):341-6. PubMed ID: 7250131
    [Abstract] [Full Text] [Related]

  • 7. [Control of the induction of ion transport through mitochondrial membranes by the enzymes of the oxidative phosphorylation system].
    Novgorodov SA, Dragunova SF, Iaguzhinskiĭ LS.
    Biofizika; 1982 May 15; 27(2):244-8. PubMed ID: 6462181
    [Abstract] [Full Text] [Related]

  • 8. Oxidative phosphorylation and the Pi-ATP exchange reaction of submitochondrial particles under the influence of organic solvents.
    Tuena de Gómez-Puyou M, Ayala G, Darszon A, Gómez-Puyou A.
    J Biol Chem; 1984 Aug 10; 259(15):9472-8. PubMed ID: 6746656
    [Abstract] [Full Text] [Related]

  • 9. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC, Westerhoff HV.
    Biochem J; 1982 May 15; 204(2):515-23. PubMed ID: 6288021
    [Abstract] [Full Text] [Related]

  • 10. On the role of factor B and oligomycin on generation and discharge of the proton gradient.
    Hughes JB, Joshi S, Sanadi DR.
    J Biol Chem; 1982 Jun 25; 257(12):6697-701. PubMed ID: 7085595
    [Abstract] [Full Text] [Related]

  • 11. Energy-dependent accumulation of the uncoupler picrate and proton flux in submitochondrial particles.
    Hanstein WG, Kiehl R.
    Biochem Biophys Res Commun; 1981 Jun 16; 100(3):1118-25. PubMed ID: 7271794
    [No Abstract] [Full Text] [Related]

  • 12. Characteristics of the active transport of Ca2+ by submitochondrial vesicles.
    Niggli V, Mattenberger M, Gazzotti P.
    Eur J Biochem; 1978 Sep 01; 89(2):361-6. PubMed ID: 710397
    [Abstract] [Full Text] [Related]

  • 13. [Electron spin resonance of phosphorylating and non-phosphorylating submitochondrial particles].
    Nedelina OS, Vishnevskiĭ ES, Brzhevskaia ON, Sheksheev EM, Kaiushin LP.
    Biofizika; 1982 Sep 01; 27(3):463-6. PubMed ID: 6284252
    [Abstract] [Full Text] [Related]

  • 14. Nature of proton cycling during gramicidin uncoupling of oxidative phosphorylation.
    Luvisetto S, Azzone GF.
    Biochemistry; 1989 Feb 07; 28(3):1100-8. PubMed ID: 2469464
    [Abstract] [Full Text] [Related]

  • 15. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL, Thayer WS.
    J Biol Chem; 1977 Dec 10; 252(23):8459-63. PubMed ID: 21873
    [Abstract] [Full Text] [Related]

  • 16. Cooperative proton-transfer reactions in the respiratory chain: redox bohr effects.
    Papa S, Guerrieri F, Izzo G.
    Methods Enzymol; 1986 Dec 10; 126():331-43. PubMed ID: 3272339
    [No Abstract] [Full Text] [Related]

  • 17. Free fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient.
    Rottenberg H, Steiner-Mordoch S.
    FEBS Lett; 1986 Jul 07; 202(2):314-8. PubMed ID: 2873057
    [Abstract] [Full Text] [Related]

  • 18. Respiration driven C1- uptake by submitochondrial particles.
    Comerford JG, Dawson AP, Selwyn MJ.
    FEBS Lett; 1988 Feb 29; 229(1):142-4. PubMed ID: 2894323
    [Abstract] [Full Text] [Related]

  • 19. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles.
    Sorgato MC, Galiazzo F, Panato L, Ferguson SJ.
    Biochim Biophys Acta; 1982 Oct 18; 682(1):184-8. PubMed ID: 6215943
    [Abstract] [Full Text] [Related]

  • 20. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L, Grieco MA, Galina A.
    FEBS Lett; 1992 Aug 17; 308(2):197-201. PubMed ID: 1499730
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.