These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


572 related items for PubMed ID: 7473155

  • 21. Prostaglandin E2 contracts vascular smooth muscle and inhibits potassium currents in vascular smooth muscle cells of rat tail artery.
    Ren J, Karpinski E, Benishin CG.
    J Pharmacol Exp Ther; 1995 Nov; 275(2):710-9. PubMed ID: 7473158
    [Abstract] [Full Text] [Related]

  • 22. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries.
    Larach DR, Schuler HG.
    J Pharmacol Exp Ther; 1993 Oct; 267(1):72-81. PubMed ID: 8229789
    [Abstract] [Full Text] [Related]

  • 23. Abnormal activation of K(+) channels in aortic smooth muscle of rats with endotoxic shock: electrophysiological and functional evidence.
    Chen SJ, Wu CC, Yang SN, Lin CI, Yen MH.
    Br J Pharmacol; 2000 Sep; 131(2):213-22. PubMed ID: 10991913
    [Abstract] [Full Text] [Related]

  • 24. Pharmacological characterization of novel cyanoguanidines as vascular KATP channel blockers.
    Khan SA, Higdon NR, Hester JB, Meisheri KD.
    J Pharmacol Exp Ther; 1997 Dec; 283(3):1207-13. PubMed ID: 9399995
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Binding and effects of KATP channel openers in the vascular smooth muscle cell line, A10.
    Russ U, Metzger F, Kickenweiz E, Hambrock A, Krippeit-Drews P, Quast U.
    Br J Pharmacol; 1997 Nov; 122(6):1119-26. PubMed ID: 9401776
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Different potassium channels are involved in relaxation of rat renal artery induced by P1075.
    Novakovic A, Pavlovic M, Milojevic P, Stojanovic I, Nenezic D, Jovic M, Ugresic N, Kanjuh V, Yang Q, He GW.
    Basic Clin Pharmacol Toxicol; 2012 Jul; 111(1):24-30. PubMed ID: 22225832
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Contribution of Na+ -Ca2+ exchanger to pinacidil-induced relaxation in the rat mesenteric artery.
    Tsang SY, Yao X, Wong CM, Au CL, Chen ZY, Huang Y.
    Br J Pharmacol; 2003 Feb; 138(3):453-60. PubMed ID: 12569070
    [Abstract] [Full Text] [Related]

  • 35. Inhibition of hypoxic coronary vasoconstriction by pinacidil.
    O'Rourke ST.
    Life Sci; 1996 Feb; 58(16):PL275-80. PubMed ID: 8614284
    [Abstract] [Full Text] [Related]

  • 36. Relaxant effects of pinacidil, nicorandil, hydralazine and nifedipine as studied in the porcine coronary artery and guinea-pig taenia coli.
    Matsui K, Ogawa Y, Imai S.
    Arch Int Pharmacodyn Ther; 1986 Sep; 283(1):124-33. PubMed ID: 2948465
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Characterization of K+ channel-dependent as well as -independent components of pinacidil-induced vasodilation.
    Meisheri KD, Swirtz MA, Purohit SS, Cipkus-Dubray LA, Khan SA, Oleynek JJ.
    J Pharmacol Exp Ther; 1991 Feb; 256(2):492-9. PubMed ID: 1993992
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 29.