These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 7473647
1. Spinocerebellar ataxia 1 (SCA1) in the Japanese in Hokkaido may derive from a single common ancestry. Wakisaka A, Sasaki H, Takada A, Fukazawa T, Suzuki Y, Hamada T, Iwabuchi K, Tashiro K, Yoshiki T. J Med Genet; 1995 Aug; 32(8):590-2. PubMed ID: 7473647 [Abstract] [Full Text] [Related]
2. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps centromeric to D6S89 and shows no recombination, in nine large kindreds, with a dinucleotide repeat at the AM10 locus. Kwiatkowski TJ, Orr HT, Banfi S, McCall AE, Jodice C, Persichetti F, Novelletto A, LeBorgne-DeMarquoy F, Duvick LA, Frontali M. Am J Hum Genet; 1993 Aug; 53(2):391-400. PubMed ID: 8101039 [Abstract] [Full Text] [Related]
3. The gene for spinal cerebellar ataxia 1 (SCA1) is flanked by two closely linked highly polymorphic microsatellite loci. Jodice C, Frontali M, Persichetti F, Novelletto A, Pandolfo M, Spadaro M, Giunti P, Schinaia G, Lulli P, Malaspina P. Hum Mol Genet; 1993 Sep; 2(9):1383-7. PubMed ID: 8242061 [Abstract] [Full Text] [Related]
4. Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Matilla T, Volpini V, Genís D, Rosell J, Corral J, Dávalos A, Molins A, Estivill X. Hum Mol Genet; 1993 Dec; 2(12):2123-8. PubMed ID: 8111382 [Abstract] [Full Text] [Related]
5. Mapping and cloning of the critical region for the spinocerebellar ataxia type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1.2 Mb. Banfi S, Chung MY, Kwiatkowski TJ, Ranum LP, McCall AE, Chinault AC, Orr HT, Zoghbi HY. Genomics; 1993 Dec; 18(3):627-35. PubMed ID: 8307572 [Abstract] [Full Text] [Related]
6. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY. Nat Genet; 1993 Jul; 4(3):221-6. PubMed ID: 8358429 [Abstract] [Full Text] [Related]
7. Expanded CAG repeats in spinocerebellar ataxia (SCA1) segregate with distinct haplotypes in South african families. Ramesar RS, Bardien S, Beighton P, Bryer A. Hum Genet; 1997 Jul; 100(1):131-7. PubMed ID: 9225982 [Abstract] [Full Text] [Related]
8. Regional mapping of the gene for autosomal dominant spinocerebellar ataxia (SCA1) by localizing the closely linked D6S89 locus to 6p24.2----p23.05. Volz A, Fonatsch C, Ziegler A. Cytogenet Cell Genet; 1992 Jul; 60(1):37-9. PubMed ID: 1582256 [Abstract] [Full Text] [Related]
9. Autosomal dominant spinocerebellar ataxia (SCA) in a Siberian founder population: assignment to the SCA1 locus. Lunkes A, Goldfarb LG, Platonov FA, Alexeev VP, Duenas-Barajas E, Gajdusek DC, Auburger G. Exp Neurol; 1994 Apr; 126(2):310-2. PubMed ID: 7925830 [Abstract] [Full Text] [Related]
10. Spinocerebellar ataxia 1 (SCA1) in the Japanese: analysis of CAG trinucleitide repeat expansion and instability of the repeat for paternal transmission. Suzuki Y, Sasaki H, Wakisaka A, Takada A, Yoshiki T, Iwabuchi K, Tashiro K, Fukazawa T, Hamada T. Jpn J Hum Genet; 1995 Mar; 40(1):131-43. PubMed ID: 7780164 [Abstract] [Full Text] [Related]
11. The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric to the HLA complex and is closely linked to the D6S89 locus in three large kindreds. Zoghbi HY, Jodice C, Sandkuijl LA, Kwiatkowski TJ, McCall AE, Huntoon SA, Lulli P, Spadaro M, Litt M, Cann HM. Am J Hum Genet; 1991 Jul; 49(1):23-30. PubMed ID: 2063871 [Abstract] [Full Text] [Related]
12. [Linkage study of Machado-Joseph disease: genetic evidence for the locus different from SCA1]. Sasaki H, Wakisaka A, Tashiro K, Hamada T, Katoh T. Rinsho Shinkeigaku; 1992 Jan; 32(1):13-6. PubMed ID: 1628431 [Abstract] [Full Text] [Related]
13. [Linkage study of hereditary olivopontocerebellar atrophy: genetic evidence for locus heterogeneity in Japanese cases]. Sasaki H, Wakisaka A, Tashiro K, Hamada T, Shima K. Rinsho Shinkeigaku; 1992 Jan; 32(1):17-22. PubMed ID: 1628432 [Abstract] [Full Text] [Related]
14. The Machado-Joseph disease locus is different from the spinocerebellar ataxia locus (SCA1). Carson WJ, Radvany J, Farrer LA, Vincent D, Rosenberg RN, MacLeod PM, Rouleau GA. Genomics; 1992 Jul; 13(3):852-5. PubMed ID: 1639414 [Abstract] [Full Text] [Related]
15. Localization of the autosomal dominant HLA-linked spinocerebellar ataxia (SCA1) locus, in two kindreds, within an 8-cM subregion of chromosome 6p. Ranum LP, Duvick LA, Rich SS, Schut LJ, Litt M, Orr HT. Am J Hum Genet; 1991 Jul; 49(1):31-41. PubMed ID: 1676561 [Abstract] [Full Text] [Related]
17. Analysis of spinocerebellar ataxia type 1 (SCA1)-related CAG trinucleotide expansion in Japan. Kameya T, Abe K, Aoki M, Sahara M, Tobita M, Konno H, Itoyama Y. Neurology; 1995 Aug; 45(8):1587-94. PubMed ID: 7543989 [Abstract] [Full Text] [Related]
18. [Recent progress of research on hereditary spinocerebellar degeneration]. Wakisaka A, Sasaki H. Nihon Rinsho; 1993 Sep; 51(9):2467-73. PubMed ID: 8411730 [Abstract] [Full Text] [Related]
19. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT. Nat Genet; 1993 Nov; 5(3):254-8. PubMed ID: 8275090 [Abstract] [Full Text] [Related]
20. Tight linkage of the gene for spinocerebellar ataxia to D6S89 on the short arm of chromosome 6 in a kindred for which close linkage to both HLA and F13A1 is excluded. Keats BJ, Pollack MS, McCall A, Wilensky MA, Ward LJ, Lu M, Zoghbi HY. Am J Hum Genet; 1991 Nov; 49(5):972-7. PubMed ID: 1928103 [Abstract] [Full Text] [Related] Page: [Next] [New Search]