These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
691 related items for PubMed ID: 7487087
1. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K, Ma Q, Lu AY, Yang CS. Arch Biochem Biophys; 1995 Nov 10; 323(2):265-73. PubMed ID: 7487087 [Abstract] [Full Text] [Related]
2. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. Ma Q, Cui K, Xiao F, Lu AY, Yang CS. J Biol Chem; 1992 Nov 05; 267(31):22298-304. PubMed ID: 1385397 [Abstract] [Full Text] [Related]
3. The role of NAD(P)H:quinone oxidoreductase in quinone-mediated p21 induction in human colon carcinoma cells. Qiu XB, Cadenas E. Arch Biochem Biophys; 1997 Oct 15; 346(2):241-51. PubMed ID: 9343371 [Abstract] [Full Text] [Related]
4. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Marohnic CC, Bewley MC, Barber MJ. Biochemistry; 2003 Sep 30; 42(38):11170-82. PubMed ID: 14503867 [Abstract] [Full Text] [Related]
5. Subunit functional studies of NAD(P)H:quinone oxidoreductase with a heterodimer approach. Cui K, Lu AY, Yang CS. Proc Natl Acad Sci U S A; 1995 Feb 14; 92(4):1043-7. PubMed ID: 7862630 [Abstract] [Full Text] [Related]
6. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase. Wu K, Knox R, Sun XZ, Joseph P, Jaiswal AK, Zhang D, Deng PS, Chen S. Arch Biochem Biophys; 1997 Nov 15; 347(2):221-8. PubMed ID: 9367528 [Abstract] [Full Text] [Related]
7. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus). Dudley BF, Winston GW. Arch Biochem Biophys; 1995 Feb 01; 316(2):879-85. PubMed ID: 7532387 [Abstract] [Full Text] [Related]
8. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential. Shen AL, Kasper CB. Biochemistry; 1996 Jul 23; 35(29):9451-9. PubMed ID: 8755724 [Abstract] [Full Text] [Related]
9. Inhibition of NAD(P)H:quinone acceptor oxidoreductase by flavones: a structure-activity study. Chen S, Hwang J, Deng PS. Arch Biochem Biophys; 1993 Apr 23; 302(1):72-7. PubMed ID: 8470908 [Abstract] [Full Text] [Related]
10. Site-directed mutagenesis of charged and potentially proton-carrying residues in the beta subunit of the proton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli. Characterization of the beta H91, beta D392, and beta K424 mutants. Hu X, Zhang J, Fjellström O, Bizouarn T, Rydström J. Biochemistry; 1999 Feb 02; 38(5):1652-8. PubMed ID: 9931033 [Abstract] [Full Text] [Related]
11. Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, rat, human, and mouse-rat chimeric enzymes. Chen S, Knox R, Lewis AD, Friedlos F, Workman P, Deng PS, Fung M, Ebenstein D, Wu K, Tsai TM. Mol Pharmacol; 1995 May 02; 47(5):934-9. PubMed ID: 7746280 [Abstract] [Full Text] [Related]
12. Role of the His57-Glu214 ionic couple located in the active site of Mycobacterium tuberculosis FprA. Pennati A, Razeto A, de Rosa M, Pandini V, Vanoni MA, Mattevi A, Coda A, Aliverti A, Zanetti G. Biochemistry; 2006 Jul 25; 45(29):8712-20. PubMed ID: 16846214 [Abstract] [Full Text] [Related]
13. Coenzyme site-directed mutants of photosynthetic A4-GAPDH show selectively reduced NADPH-dependent catalysis, similar to regulatory AB-GAPDH inhibited by oxidized thioredoxin. Sparla F, Fermani S, Falini G, Zaffagnini M, Ripamonti A, Sabatino P, Pupillo P, Trost P. J Mol Biol; 2004 Jul 23; 340(5):1025-37. PubMed ID: 15236965 [Abstract] [Full Text] [Related]
14. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K, Jahnke K, Curti B, Hagen WR, Schnackerz KD, Vanoni MA. Biochemistry; 1998 Dec 15; 37(50):17598-609. PubMed ID: 9860876 [Abstract] [Full Text] [Related]
15. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB, Klein M, Fulco A, Feyereisen R. Biochemistry; 1997 Jul 08; 36(27):8401-12. PubMed ID: 9204888 [Abstract] [Full Text] [Related]
16. Mutagenesis of Glycine 179 modulates both catalytic efficiency and reduced pyridine nucleotide specificity in cytochrome b5 reductase. Roma GW, Crowley LJ, Davis CA, Barber MJ. Biochemistry; 2005 Oct 18; 44(41):13467-76. PubMed ID: 16216070 [Abstract] [Full Text] [Related]
17. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands. Davis CA, Dhawan IK, Johnson MK, Barber MJ. Arch Biochem Biophys; 2002 Apr 01; 400(1):63-75. PubMed ID: 11913972 [Abstract] [Full Text] [Related]
18. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Schlegel BP, Ratnam K, Penning TM. Biochemistry; 1998 Aug 04; 37(31):11003-11. PubMed ID: 9692994 [Abstract] [Full Text] [Related]
19. Crystal structure of a new type of NADPH-dependent quinone oxidoreductase (QOR2) from Escherichia coli. Kim IK, Yim HS, Kim MK, Kim DW, Kim YM, Cha SS, Kang SO. J Mol Biol; 2008 May 30; 379(2):372-84. PubMed ID: 18455185 [Abstract] [Full Text] [Related]
20. A site-directed mutagenesis study at Lys-113 of NAD(P)H:quinone-acceptor oxidoreductase: an involvement of Lys-113 in the binding of the flavin adenine dinucleotide prosthetic group. Tedeschi G, Deng PS, Chen HH, Forrest GL, Massey V, Chen S. Arch Biochem Biophys; 1995 Aug 01; 321(1):76-82. PubMed ID: 7639539 [Abstract] [Full Text] [Related] Page: [Next] [New Search]