These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 7487108

  • 1. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.
    Pichorner H, Metodiewa D, Winterbourn CC.
    Arch Biochem Biophys; 1995 Nov 10; 323(2):429-37. PubMed ID: 7487108
    [Abstract] [Full Text] [Related]

  • 2. The reaction of superoxide with reduced glutathione.
    Winterbourn CC, Metodiewa D.
    Arch Biochem Biophys; 1994 Nov 01; 314(2):284-90. PubMed ID: 7979367
    [Abstract] [Full Text] [Related]

  • 3. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA, Goldman R, Claycamp HG, Kagan VE.
    Arch Biochem Biophys; 1995 Mar 10; 317(2):315-23. PubMed ID: 7893144
    [Abstract] [Full Text] [Related]

  • 4. The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis.
    Sturgeon BE, Sipe HJ, Barr DP, Corbett JT, Martinez JG, Mason RP.
    J Biol Chem; 1998 Nov 13; 273(46):30116-21. PubMed ID: 9804766
    [Abstract] [Full Text] [Related]

  • 5. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H, Hogg N, Joseph J, Kalyanaraman B.
    Arch Biochem Biophys; 1996 Jun 01; 330(1):115-24. PubMed ID: 8651684
    [Abstract] [Full Text] [Related]

  • 6. Generation of superoxide radicals by copper-glutathione complexes: redox-consequences associated with their interaction with reduced glutathione.
    Speisky H, Gómez M, Burgos-Bravo F, López-Alarcón C, Jullian C, Olea-Azar C, Aliaga ME.
    Bioorg Med Chem; 2009 Mar 01; 17(5):1803-10. PubMed ID: 19230679
    [Abstract] [Full Text] [Related]

  • 7. Albumin oxidation to diverse radicals by the peroxidase activity of Cu,Zn-superoxide dismutase in the presence of bicarbonate or nitrite: diffusible radicals produce cysteinyl and solvent-exposed and -unexposed tyrosyl radicals.
    Bonini MG, Fernandes DC, Augusto O.
    Biochemistry; 2004 Jan 20; 43(2):344-51. PubMed ID: 14717588
    [Abstract] [Full Text] [Related]

  • 8. Glutathione-mediated formation of oxygen free radicals by the major metabolite of oltipraz.
    Velayutham M, Villamena FA, Navamal M, Fishbein JC, Zweier JL.
    Chem Res Toxicol; 2005 Jun 20; 18(6):970-5. PubMed ID: 15962931
    [Abstract] [Full Text] [Related]

  • 9. Cu(I)-glutathione complex: a potential source of superoxide radicals generation.
    Speisky H, Gómez M, Carrasco-Pozo C, Pastene E, Lopez-Alarcón C, Olea-Azar C.
    Bioorg Med Chem; 2008 Jul 01; 16(13):6568-74. PubMed ID: 18515117
    [Abstract] [Full Text] [Related]

  • 10. Tyrosinase scavenges tyrosyl radical.
    Kim SM, Han S.
    Biochem Biophys Res Commun; 2003 Dec 19; 312(3):642-9. PubMed ID: 14680813
    [Abstract] [Full Text] [Related]

  • 11. In vitro free radical metabolism of phenolphthalein by peroxidases.
    Sipe HJ, Corbett JT, Mason RP.
    Drug Metab Dispos; 1997 Apr 19; 25(4):468-80. PubMed ID: 9107547
    [Abstract] [Full Text] [Related]

  • 12. Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells.
    Cuddihy SL, Parker A, Harwood DT, Vissers MC, Winterbourn CC.
    Free Radic Biol Med; 2008 Apr 15; 44(8):1637-44. PubMed ID: 18291121
    [Abstract] [Full Text] [Related]

  • 13. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation.
    Spear N, Aust SD.
    Arch Biochem Biophys; 1995 Dec 01; 324(1):111-6. PubMed ID: 7503544
    [Abstract] [Full Text] [Related]

  • 14. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V, Sakac M.
    Med Pregl; 2000 Dec 01; 53(9-10):463-74. PubMed ID: 11320727
    [Abstract] [Full Text] [Related]

  • 15. Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redox cycling of flavonoids.
    Galati G, Chan T, Wu B, O'Brien PJ.
    Chem Res Toxicol; 1999 Jun 01; 12(6):521-5. PubMed ID: 10368315
    [Abstract] [Full Text] [Related]

  • 16. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction.
    Gunther MR.
    Free Radic Biol Med; 2004 Jun 01; 36(11):1345-54. PubMed ID: 15135170
    [Abstract] [Full Text] [Related]

  • 17. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.
    Das AB, Nauser T, Koppenol WH, Kettle AJ, Winterbourn CC, Nagy P.
    Free Radic Biol Med; 2014 May 01; 70():86-95. PubMed ID: 24561577
    [Abstract] [Full Text] [Related]

  • 18. Drug-induced protein free radical formation is attenuated by unsaturated fatty acids by scavenging drug-derived phenyl radical metabolites.
    Narwaley M, Michail K, Arvadia P, Siraki AG.
    Chem Res Toxicol; 2011 Jul 18; 24(7):1031-9. PubMed ID: 21671642
    [Abstract] [Full Text] [Related]

  • 19. Superoxide-dependent reduction of free Fe(3+) and release of Fe(2+) from ferritin by the physiologically-occurring Cu(I)-glutathione complex.
    Aliaga ME, Carrasco-Pozo C, López-Alarcón C, Olea-Azar C, Speisky H.
    Bioorg Med Chem; 2011 Jan 01; 19(1):534-41. PubMed ID: 21115254
    [Abstract] [Full Text] [Related]

  • 20. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S, Bandyopadhyay U, Bandyopadhyay D, Banerjee RK.
    Biochemistry; 1998 Dec 01; 37(48):16922-33. PubMed ID: 9836585
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.