These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


982 related items for PubMed ID: 7490748

  • 1. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS, Otzen DE, Fersht AR.
    J Mol Biol; 1995 Nov 24; 254(2):260-88. PubMed ID: 7490748
    [Abstract] [Full Text] [Related]

  • 2. Folding of circular and permuted chymotrypsin inhibitor 2: retention of the folding nucleus.
    Otzen DE, Fersht AR.
    Biochemistry; 1998 Jun 02; 37(22):8139-46. PubMed ID: 9609709
    [Abstract] [Full Text] [Related]

  • 3. Search for nucleation sites in smaller fragments of chymotrypsin inhibitor 2.
    Itzhaki LS, Neira JL, Ruiz-Sanz J, de Prat Gay G, Fersht AR.
    J Mol Biol; 1995 Nov 24; 254(2):289-304. PubMed ID: 7490749
    [Abstract] [Full Text] [Related]

  • 4. Lattice models for proteins reveal multiple folding nuclei for nucleation-collapse mechanism.
    Klimov DK, Thirumalai D.
    J Mol Biol; 1998 Sep 18; 282(2):471-92. PubMed ID: 9735420
    [Abstract] [Full Text] [Related]

  • 5. The structure of the major transition state for folding of an FF domain from experiment and simulation.
    Jemth P, Day R, Gianni S, Khan F, Allen M, Daggett V, Fersht AR.
    J Mol Biol; 2005 Jul 08; 350(2):363-78. PubMed ID: 15935381
    [Abstract] [Full Text] [Related]

  • 6. Towards the complete structural characterization of a protein folding pathway: the structures of the denatured, transition and native states for the association/folding of two complementary fragments of cleaved chymotrypsin inhibitor 2. Direct evidence for a nucleation-condensation mechanism.
    Neira JL, Davis B, Ladurner AG, Buckle AM, Gay Gde P, Fersht AR.
    Fold Des; 1996 Jul 08; 1(3):189-208. PubMed ID: 9079381
    [Abstract] [Full Text] [Related]

  • 7. Mapping the interactions present in the transition state for unfolding/folding of FKBP12.
    Fulton KF, Main ER, Daggett V, Jackson SE.
    J Mol Biol; 1999 Aug 13; 291(2):445-61. PubMed ID: 10438631
    [Abstract] [Full Text] [Related]

  • 8. Titration properties and thermodynamics of the transition state for folding: comparison of two-state and multi-state folding pathways.
    Tan YJ, Oliveberg M, Fersht AR.
    J Mol Biol; 1996 Nov 29; 264(2):377-89. PubMed ID: 8951383
    [Abstract] [Full Text] [Related]

  • 9. Conserved residues and the mechanism of protein folding.
    Shakhnovich E, Abkevich V, Ptitsyn O.
    Nature; 1996 Jan 04; 379(6560):96-8. PubMed ID: 8538750
    [Abstract] [Full Text] [Related]

  • 10. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain.
    Villegas V, Martínez JC, Avilés FX, Serrano L.
    J Mol Biol; 1998 Nov 13; 283(5):1027-36. PubMed ID: 9799641
    [Abstract] [Full Text] [Related]

  • 11. Differential stabilization of two hydrophobic cores in the transition state of the villin 14T folding reaction.
    Choe SE, Li L, Matsudaira PT, Wagner G, Shakhnovich EI.
    J Mol Biol; 2000 Nov 17; 304(1):99-115. PubMed ID: 11071813
    [Abstract] [Full Text] [Related]

  • 12. Structure of the transition state for folding of a protein derived from experiment and simulation.
    Daggett V, Li A, Itzhaki LS, Otzen DE, Fersht AR.
    J Mol Biol; 1996 Mar 29; 257(2):430-40. PubMed ID: 8609634
    [Abstract] [Full Text] [Related]

  • 13. Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications.
    Fersht AR.
    Proc Natl Acad Sci U S A; 1995 Nov 21; 92(24):10869-73. PubMed ID: 7479900
    [Abstract] [Full Text] [Related]

  • 14. Conformational pathway of the polypeptide chain of chymotrypsin inhibitor-2 growing from its N terminus in vitro. Parallels with the protein folding pathway.
    de Prat Gay G, Ruiz-Sanz J, Neira JL, Corrales FJ, Otzen DE, Ladurner AG, Fersht AR.
    J Mol Biol; 1995 Dec 15; 254(5):968-79. PubMed ID: 7500364
    [Abstract] [Full Text] [Related]

  • 15. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology.
    Li Y, Gupta R, Cho JH, Raleigh DP.
    Biochemistry; 2007 Jan 30; 46(4):1013-21. PubMed ID: 17240985
    [Abstract] [Full Text] [Related]

  • 16. Strain in the folding nucleus of chymotrypsin inhibitor 2.
    Ladurner AG, Itzhaki LS, Fersht AR.
    Fold Des; 1997 Jan 30; 2(6):363-8. PubMed ID: 9427010
    [Abstract] [Full Text] [Related]

  • 17. The changing nature of the protein folding transition state: implications for the shape of the free-energy profile for folding.
    Oliveberg M, Tan YJ, Silow M, Fersht AR.
    J Mol Biol; 1998 Apr 10; 277(4):933-43. PubMed ID: 9545382
    [Abstract] [Full Text] [Related]

  • 18. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold.
    Cota E, Steward A, Fowler SB, Clarke J.
    J Mol Biol; 2001 Feb 02; 305(5):1185-94. PubMed ID: 11162123
    [Abstract] [Full Text] [Related]

  • 19. Conversion of two-state to multi-state folding kinetics on fusion of two protein foldons.
    Inaba K, Kobayashi N, Fersht AR.
    J Mol Biol; 2000 Sep 08; 302(1):219-33. PubMed ID: 10964571
    [Abstract] [Full Text] [Related]

  • 20. The rate of isomerisation of peptidyl-proline bonds as a probe for interactions in the physiological denatured state of chymotrypsin inhibitor 2.
    Tan YJ, Oliveberg M, Otzen DE, Fersht AR.
    J Mol Biol; 1997 Jun 20; 269(4):611-22. PubMed ID: 9217264
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 50.