These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


495 related items for PubMed ID: 7492748

  • 1. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.
    Sharp KA, Friedman RA, Misra V, Hecht J, Honig B.
    Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748
    [Abstract] [Full Text] [Related]

  • 2. Salt effects on ligand-DNA binding. Minor groove binding antibiotics.
    Misra VK, Sharp KA, Friedman RA, Honig B.
    J Mol Biol; 1994 Apr 29; 238(2):245-63. PubMed ID: 7512653
    [Abstract] [Full Text] [Related]

  • 3. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site.
    Frank DE, Saecker RM, Bond JP, Capp MW, Tsodikov OV, Melcher SE, Levandoski MM, Record MT.
    J Mol Biol; 1997 Apr 18; 267(5):1186-206. PubMed ID: 9150406
    [Abstract] [Full Text] [Related]

  • 4. Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations.
    Ou Z, Muthukumar M.
    J Chem Phys; 2006 Apr 21; 124(15):154902. PubMed ID: 16674260
    [Abstract] [Full Text] [Related]

  • 5. Salt effects on protein-DNA interactions. The lambda cI repressor and EcoRI endonuclease.
    Misra VK, Hecht JL, Sharp KA, Friedman RA, Honig B.
    J Mol Biol; 1994 Apr 29; 238(2):264-80. PubMed ID: 8158653
    [Abstract] [Full Text] [Related]

  • 6. The salt-dependence of a protein-ligand interaction: ion-protein binding energetics.
    Waldron TT, Schrift GL, Murphy KP.
    J Mol Biol; 2005 Feb 25; 346(3):895-905. PubMed ID: 15713470
    [Abstract] [Full Text] [Related]

  • 7. [Binding of positive charged ligands to DNA. The effect of ionic strength, charge and size of the ligand].
    Sivolob AV, Khrapunov SN.
    Mol Biol (Mosk); 1988 Feb 25; 22(2):414-22. PubMed ID: 3393151
    [Abstract] [Full Text] [Related]

  • 8. Application of the Poisson Boltzmann polyelectrolyte model for analysis of equilibria between single-, double-, and triple-stranded polynucleotides in the presence of K(+), Na(+), and Mg(2+) ions.
    Korolev N, Lyubartsev AP, Nordenskiöld L.
    J Biomol Struct Dyn; 2002 Oct 25; 20(2):275-90. PubMed ID: 12354079
    [Abstract] [Full Text] [Related]

  • 9. Counterion condensation and shape within Poisson-Boltzmann theory.
    Lamm G, Pack GR.
    Biopolymers; 2010 Jul 25; 93(7):619-39. PubMed ID: 20213767
    [Abstract] [Full Text] [Related]

  • 10. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P, Trylska J.
    Biopolymers; 2008 Feb 25; 89(2):93-113. PubMed ID: 17969016
    [Abstract] [Full Text] [Related]

  • 11. Interactions of cationic ligands and proteins with small nucleic acids: analytic treatment of the large coulombic end effect on binding free energy as a function of salt concentration.
    Shkel IA, Ballin JD, Record MT.
    Biochemistry; 2006 Jul 11; 45(27):8411-26. PubMed ID: 16819840
    [Abstract] [Full Text] [Related]

  • 12. Approach to the limit of counterion condensation.
    Fenley MO, Manning GS, Olson WK.
    Biopolymers; 1990 Jul 11; 30(13-14):1191-203. PubMed ID: 2085657
    [Abstract] [Full Text] [Related]

  • 13. Monte Carlo and Poisson-Boltzmann calculations of the fraction of counterions bound to DNA.
    Lamm G, Wong L, Pack GR.
    Biopolymers; 1994 Feb 11; 34(2):227-37. PubMed ID: 8142591
    [Abstract] [Full Text] [Related]

  • 14. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
    Ubbink J, Khokhlov AR.
    J Chem Phys; 2004 Mar 15; 120(11):5353-65. PubMed ID: 15267409
    [Abstract] [Full Text] [Related]

  • 15. Salt-dependent binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline and dipyrido[3,2-a:2',3'-c]phenazine to calf thymus DNA.
    Mudasir, Wijaya K, Tri Wahyuni E, Yoshioka N, Inoue H.
    Biophys Chem; 2006 Apr 20; 121(1):44-50. PubMed ID: 16442696
    [Abstract] [Full Text] [Related]

  • 16. Density functional study on the structural and thermodynamic properties of aqueous DNA-electrolyte solution in the framework of cell model.
    Wang K, Yu YX, Gao GH.
    J Chem Phys; 2008 May 14; 128(18):185101. PubMed ID: 18532848
    [Abstract] [Full Text] [Related]

  • 17. Sequence specificity, enantiospecificity and polyelectrolyte effect in the binding to DNA of a 6-(2-pyridyl)phenanthridine chiral photonuclease.
    Colmenarejo G, Montero F, Orellana G.
    Anticancer Drug Des; 1997 Jun 14; 12(4):239-60. PubMed ID: 9199658
    [Abstract] [Full Text] [Related]

  • 18. Calorimetric investigation of ethidium and netropsin binding to chicken erythrocyte chromatin.
    Taquet A, Labarbe R, Houssier C.
    Biochemistry; 1998 Jun 23; 37(25):9119-26. PubMed ID: 9636058
    [Abstract] [Full Text] [Related]

  • 19. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly CI, Jakalian A, Purisima EO.
    J Chem Inf Model; 2007 Jun 23; 47(1):122-33. PubMed ID: 17238257
    [Abstract] [Full Text] [Related]

  • 20. Dissecting the free energy of drug binding to DNA.
    Chaires JB.
    Anticancer Drug Des; 1996 Dec 23; 11(8):569-80. PubMed ID: 9022746
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.