These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. MIG1-dependent and MIG1-independent regulation of GAL gene expression in Saccharomyces cerevisiae: role of Imp2p. Alberti A, Lodi T, Ferrero I, Donnini C. Yeast; 2003 Oct 15; 20(13):1085-96. PubMed ID: 14558142 [Abstract] [Full Text] [Related]
4. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Hedges D, Proft M, Entian KD. Mol Cell Biol; 1995 Apr 15; 15(4):1915-22. PubMed ID: 7891685 [Abstract] [Full Text] [Related]
5. Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae. Lodi T, Donnini C, Ferrero I. J Gen Microbiol; 1991 May 15; 137(5):1039-44. PubMed ID: 1865178 [Abstract] [Full Text] [Related]
6. The Saccharomyces cerevisiae IMP2 gene encodes a transcriptional activator that mediates protection against DNA damage caused by bleomycin and other oxidants. Masson JY, Ramotar D. Mol Cell Biol; 1996 May 15; 16(5):2091-100. PubMed ID: 8628275 [Abstract] [Full Text] [Related]
7. MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Hu Z, Nehlin JO, Ronne H, Michels CA. Curr Genet; 1995 Aug 15; 28(3):258-66. PubMed ID: 8529272 [Abstract] [Full Text] [Related]
8. Physiological and genetic analysis of the carbon regulation of the NAD-dependent glutamate dehydrogenase of Saccharomyces cerevisiae. Coschigano PW, Miller SM, Magasanik B. Mol Cell Biol; 1991 Sep 15; 11(9):4455-65. PubMed ID: 1652057 [Abstract] [Full Text] [Related]
9. Leu343Phe substitution in the Malx3 protein of Saccharomyces cerevisiae increases the constitutivity and glucose insensitivity of MAL gene expression. Higgins VJ, Braidwood M, Bissinger P, Dawes IW, Attfield PV. Curr Genet; 1999 Jun 15; 35(5):491-8. PubMed ID: 10369955 [Abstract] [Full Text] [Related]
10. Transcriptional regulation of the KlDLD gene, encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase in Kluyveromyces lactis: effect of Klhap2 and fog mutations. Lodi T, Goffrini P, Bolondi I, Ferrero I. Curr Genet; 1998 Jul 15; 34(1):12-20. PubMed ID: 9683671 [Abstract] [Full Text] [Related]
11. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Mol Cell Biol; 2005 May 15; 25(10):4075-91. PubMed ID: 15870279 [Abstract] [Full Text] [Related]
12. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. Haurie V, Perrot M, Mini T, Jenö P, Sagliocco F, Boucherie H. J Biol Chem; 2001 Jan 05; 276(1):76-85. PubMed ID: 11024040 [Abstract] [Full Text] [Related]
13. The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription. Rudoni S, Mauri I, Ceriani M, Coccetti P, Martegani E. Int J Biochem Cell Biol; 2000 Feb 05; 32(2):215-24. PubMed ID: 10687955 [Abstract] [Full Text] [Related]
14. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Grauslund M, Lopes JM, Rønnow B. Nucleic Acids Res; 1999 Nov 15; 27(22):4391-8. PubMed ID: 10536147 [Abstract] [Full Text] [Related]
15. UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is a heat shock gene that is also subject to catabolite derepression control. Watt R, Piper PW. Mol Gen Genet; 1997 Jan 27; 253(4):439-47. PubMed ID: 9037103 [Abstract] [Full Text] [Related]
16. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p. Bali M, Zhang B, Morano KA, Michels CA. J Biol Chem; 2003 Nov 28; 278(48):47441-8. PubMed ID: 14500708 [Abstract] [Full Text] [Related]
17. A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity. Medintz I, Wang X, Hradek T, Michels CA. Biochemistry; 2000 Apr 18; 39(15):4518-26. PubMed ID: 10758001 [Abstract] [Full Text] [Related]
18. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression. Zimmermann FK, Scheel I. Mol Gen Genet; 1977 Jul 07; 154(1):75-82. PubMed ID: 197390 [Abstract] [Full Text] [Related]
19. Positive regulation of the LPD1 gene of Saccharomyces cerevisiae by the HAP2/HAP3/HAP4 activation system. Bowman SB, Zaman Z, Collinson LP, Brown AJ, Dawes IW. Mol Gen Genet; 1992 Jan 07; 231(2):296-303. PubMed ID: 1310523 [Abstract] [Full Text] [Related]
20. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. Wendell DL, Bisson LF. J Bacteriol; 1994 Jun 07; 176(12):3730-7. PubMed ID: 8206851 [Abstract] [Full Text] [Related] Page: [Next] [New Search]