These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


333 related items for PubMed ID: 7497131

  • 1. Short superstrings and the structure of overlapping strings.
    Armen C, Stein C.
    J Comput Biol; 1995; 2(2):307-32. PubMed ID: 7497131
    [Abstract] [Full Text] [Related]

  • 2. A new graph model and algorithms for consistent superstring problems.
    Na JC, Cho S, Choi S, Kim JW, Park K, Sim JS.
    Philos Trans A Math Phys Eng Sci; 2014 May 28; 372(2016):20130134. PubMed ID: 24751868
    [Abstract] [Full Text] [Related]

  • 3. Fast exact algorithms for the closest string and substring problems with application to the planted (L, d)-motif model.
    Chen ZZ, Wang L.
    IEEE/ACM Trans Comput Biol Bioinform; 2011 May 28; 8(5):1400-10. PubMed ID: 21282867
    [Abstract] [Full Text] [Related]

  • 4. Reconstructing strings from substrings.
    Skiena SS, Sundaram G.
    J Comput Biol; 1995 May 28; 2(2):333-53. PubMed ID: 7497132
    [Abstract] [Full Text] [Related]

  • 5. A combinatorial approach to the design of vaccines.
    Martínez L, Milanič M, Legarreta L, Medvedev P, Malaina I, de la Fuente IM.
    J Math Biol; 2015 May 28; 70(6):1327-58. PubMed ID: 24859149
    [Abstract] [Full Text] [Related]

  • 6. Coevolving solutions to the shortest common superstring problem.
    Zaritsky A, Sipper M.
    Biosystems; 2004 May 28; 76(1-3):209-16. PubMed ID: 15351144
    [Abstract] [Full Text] [Related]

  • 7. Non-similarity combinatorial problems.
    Rubinov AR, Timkovsky VG.
    Biosystems; 1993 May 28; 30(1-3):81-92. PubMed ID: 8374083
    [Abstract] [Full Text] [Related]

  • 8. A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.
    Dinh H, Rajasekaran S.
    Bioinformatics; 2011 Jul 15; 27(14):1901-7. PubMed ID: 21636593
    [Abstract] [Full Text] [Related]

  • 9. Toward simplifying and accurately formulating fragment assembly.
    Myers EW.
    J Comput Biol; 1995 Jul 15; 2(2):275-90. PubMed ID: 7497129
    [Abstract] [Full Text] [Related]

  • 10. Multiple sequence assembly from reads alignable to a common reference genome.
    Peng Q, Smith AD.
    IEEE/ACM Trans Comput Biol Bioinform; 2011 Jul 15; 8(5):1283-95. PubMed ID: 21778524
    [Abstract] [Full Text] [Related]

  • 11. On the hardness of counting and sampling center strings.
    Boucher C, Omar M.
    IEEE/ACM Trans Comput Biol Bioinform; 2012 Jul 15; 9(6):1843-6. PubMed ID: 22641713
    [Abstract] [Full Text] [Related]

  • 12. Solving the 3-SAT problem based on DNA computing.
    Liu W, Gao L, Liu X, Wang S, Xu J.
    J Chem Inf Comput Sci; 2003 Jul 15; 43(6):1872-5. PubMed ID: 14632435
    [Abstract] [Full Text] [Related]

  • 13. A new algorithm for DNA sequence assembly.
    Idury RM, Waterman MS.
    J Comput Biol; 1995 Jul 15; 2(2):291-306. PubMed ID: 7497130
    [Abstract] [Full Text] [Related]

  • 14. Compression of strings with approximate repeats.
    Allison L, Edgoose T, Dix TI.
    Proc Int Conf Intell Syst Mol Biol; 1998 Jul 15; 6():8-16. PubMed ID: 9783204
    [Abstract] [Full Text] [Related]

  • 15. Reconstruction of a string from substring precedence data.
    Rubinov AR, Gelfand MS.
    J Comput Biol; 1995 Jul 15; 2(2):371-81. PubMed ID: 7497134
    [Abstract] [Full Text] [Related]

  • 16. A hybrid metaheuristic for closest string problem.
    Mousavi SR.
    Int J Comput Biol Drug Des; 2011 Jul 15; 4(3):245-61. PubMed ID: 21778558
    [Abstract] [Full Text] [Related]

  • 17. Weighted lambda superstrings applied to vaccine design.
    Martínez L, Milanič M, Malaina I, Álvarez C, Pérez MB, M de la Fuente I.
    PLoS One; 2019 Jul 15; 14(2):e0211714. PubMed ID: 30735507
    [Abstract] [Full Text] [Related]

  • 18. Fast motif recognition via application of statistical thresholds.
    Boucher C, King J.
    BMC Bioinformatics; 2010 Jan 18; 11 Suppl 1(Suppl 1):S11. PubMed ID: 20122182
    [Abstract] [Full Text] [Related]

  • 19. An O(N2) algorithm for discovering optimal Boolean pattern pairs.
    Bannai H, Hyyrö H, Shinohara A, Takeda M, Nakai K, Miyano S.
    IEEE/ACM Trans Comput Biol Bioinform; 2004 Jan 18; 1(4):159-70. PubMed ID: 17051698
    [Abstract] [Full Text] [Related]

  • 20. Chemical reaction optimization for solving shortest common supersequence problem.
    Khaled Saifullah CM, Rafiqul Islam M.
    Comput Biol Chem; 2016 Oct 18; 64():82-93. PubMed ID: 27299980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.