These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 7499289

  • 41. Water oxidation by a cytochrome p450: mechanism and function of the reaction.
    Prasad B, Mah DJ, Lewis AR, Plettner E.
    PLoS One; 2013; 8(4):e61897. PubMed ID: 23634216
    [Abstract] [Full Text] [Related]

  • 42. Substrate mobility in thiocamphor-bound cytochrome P450cam: an explanation of the conflict between the observed product profile and the X-ray structure.
    Paulsen MD, Ornstein RL.
    Protein Eng; 1993 Jun; 6(4):359-65. PubMed ID: 8332592
    [Abstract] [Full Text] [Related]

  • 43. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV, Li P, Champion PM, Martinis SA, Sligar SG.
    Biochemistry; 1992 May 12; 31(18):4384-93. PubMed ID: 1581294
    [Abstract] [Full Text] [Related]

  • 44. Ethylbenzene hydroxylation by cytochrome P450cam.
    Filipovic D, Paulsen MD, Loida PJ, Sligar SG, Ornstein RL.
    Biochem Biophys Res Commun; 1992 Nov 30; 189(1):488-95. PubMed ID: 1449498
    [Abstract] [Full Text] [Related]

  • 45. Substrate modulates compound I formation in peroxide shunt pathway of Pseudomonas putida cytochrome P450(cam).
    Prasad S, Mitra S.
    Biochem Biophys Res Commun; 2004 Feb 06; 314(2):610-4. PubMed ID: 14733951
    [Abstract] [Full Text] [Related]

  • 46. Substrate induced changes of the active site electronic states in reduced cytochrome P450cam and the photolysis product of its CO complex. Low-temperature magnetic circular dichroism data.
    Greschner S, Sharonov YuA, Jung C.
    FEBS Lett; 1993 Jan 04; 315(2):153-8. PubMed ID: 8417971
    [Abstract] [Full Text] [Related]

  • 47. [Electron-conformational interactions at the active site of reduced bacterial cytochrome P450cam induced by a substrate and analysis of the electron structure of heme].
    Sharonov IuA.
    Mol Biol (Mosk); 1992 Jan 04; 26(6):1251-62. PubMed ID: 1491671
    [Abstract] [Full Text] [Related]

  • 48. On the identity and reactivity patterns of the "second oxidant" of the T252A mutant of cytochrome P450cam in the oxidation of 5-methylenenylcamphor.
    Hirao H, Kumar D, Shaik S.
    J Inorg Biochem; 2006 Dec 04; 100(12):2054-68. PubMed ID: 17084458
    [Abstract] [Full Text] [Related]

  • 49. A model for effector activity in a highly specific biological electron transfer complex: the cytochrome P450(cam)-putidaredoxin couple.
    Pochapsky SS, Pochapsky TC, Wei JW.
    Biochemistry; 2003 May 20; 42(19):5649-56. PubMed ID: 12741821
    [Abstract] [Full Text] [Related]

  • 50. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics.
    Purdy MM, Koo LS, de Montellano PR, Klinman JP.
    Biochemistry; 2006 Dec 26; 45(51):15793-806. PubMed ID: 17176102
    [Abstract] [Full Text] [Related]

  • 51. NADH- and oxygen-dependent multiple turnovers of cytochrome P-450-CAM without putidaredoxin and putidaredoxin reductase.
    Eble KS, Dawson JH.
    Biochemistry; 1984 Apr 24; 23(9):2068-73. PubMed ID: 6722135
    [Abstract] [Full Text] [Related]

  • 52. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations.
    Loida PJ, Sligar SG, Paulsen MD, Arnold GE, Ornstein RL.
    J Biol Chem; 1995 Mar 10; 270(10):5326-30. PubMed ID: 7890644
    [Abstract] [Full Text] [Related]

  • 53. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD, Filipovic D, Sligar SG, Ornstein RL.
    Protein Sci; 1993 Mar 10; 2(3):357-65. PubMed ID: 8453374
    [Abstract] [Full Text] [Related]

  • 54. Clay-bridged electron transfer between cytochrome p450(cam) and electrode.
    Lei C, Wollenberger U, Jung C, Scheller FW.
    Biochem Biophys Res Commun; 2000 Feb 24; 268(3):740-4. PubMed ID: 10679275
    [Abstract] [Full Text] [Related]

  • 55. Kinetic analysis of oxidation of coumarins by human cytochrome P450 2A6.
    Yun CH, Kim KH, Calcutt MW, Guengerich FP.
    J Biol Chem; 2005 Apr 01; 280(13):12279-91. PubMed ID: 15665333
    [Abstract] [Full Text] [Related]

  • 56. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T, Yoshizawa K.
    J Am Chem Soc; 2003 Apr 16; 125(15):4652-61. PubMed ID: 12683838
    [Abstract] [Full Text] [Related]

  • 57. Chemotaxis by Pseudomonas putida (ATCC 17453) towards camphor involves cytochrome P450cam (CYP101A1).
    Balaraman P, Plettner E.
    Biochim Biophys Acta Gen Subj; 2019 Feb 16; 1863(2):304-312. PubMed ID: 30391161
    [Abstract] [Full Text] [Related]

  • 58. Electron-transfer reactions and functionalization of cytochrome P450cam monooxygenase system in reverse micelles.
    Ichinose H, Michizoe J, Maruyama T, Kamiya N, Goto M.
    Langmuir; 2004 Jun 22; 20(13):5564-8. PubMed ID: 15986701
    [Abstract] [Full Text] [Related]

  • 59. Bio-organic chemistry and cytochrome P-450-dependent catalysis.
    Sligar SG, Gelb MH, Heimbrook DC.
    Xenobiotica; 1984 Jun 22; 14(1-2):63-86. PubMed ID: 6372267
    [Abstract] [Full Text] [Related]

  • 60. Multicopy molecular dynamics simulations suggest how to reconcile crystallographic and product formation data for camphor enantiomers bound to cytochrome P-450cam.
    Das B, Helms V, Lounnas V, Wade RC.
    J Inorg Biochem; 2000 Aug 31; 81(3):121-31. PubMed ID: 11051557
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.