These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 7507649

  • 1. Quantitative reverse transcriptase-polymerase chain reaction of glucose transporter 1 mRNA levels in rat brain microvessels.
    Wadhwani KC, Fukuyama R, Giordano T, Rapoport SI, Chandrasekaran K.
    Anal Biochem; 1993 Nov 15; 215(1):134-41. PubMed ID: 7507649
    [Abstract] [Full Text] [Related]

  • 2. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV, Nazarova NIu, Tishchenko LI, Tuohimaa P, Sedova VM.
    Tsitologiia; 2003 Nov 15; 45(4):392-402. PubMed ID: 14520871
    [Abstract] [Full Text] [Related]

  • 3. The use of the reverse transcription-competitive polymerase chain reaction to investigate the in vivo regulation of gene expression in small tissue samples.
    Auboeuf D, Vidal H.
    Anal Biochem; 1997 Feb 15; 245(2):141-8. PubMed ID: 9056199
    [Abstract] [Full Text] [Related]

  • 4. Quantitation of mRNA levels of steroid 5alpha-reductase isozymes: A method that combines one-step reverse transcription-polymerase chain reaction and separation by capillary electrophoresis.
    Torres JM, Ortega E.
    Electrophoresis; 2004 Feb 15; 25(3):415-20. PubMed ID: 14760632
    [Abstract] [Full Text] [Related]

  • 5. An improved method for absolute quantification of mRNA using multiplex polymerase chain reaction: determination of renin and angiotensinogen mRNA levels in various tissues.
    Dostal DE, Rothblum KN, Baker KM.
    Anal Biochem; 1994 Dec 15; 223(2):239-50. PubMed ID: 7887470
    [Abstract] [Full Text] [Related]

  • 6. P450 aromatase messenger ribonucleic acid expression in male rat germ cells: detection by reverse transcription-polymerase chain reaction amplification.
    Janulis L, Bahr JM, Hess RA, Bunick D.
    J Androl; 1996 Dec 15; 17(6):651-8. PubMed ID: 9016395
    [Abstract] [Full Text] [Related]

  • 7. Quantitation of changes in the expression of multiple genes by simultaneous polymerase chain reaction.
    Dukas K, Sarfati P, Vaysse N, Pradayrol L.
    Anal Biochem; 1993 Nov 15; 215(1):66-72. PubMed ID: 7507650
    [Abstract] [Full Text] [Related]

  • 8. Simultaneous measurement of multiple mRNAs with a single control by quantitative competitive reverse transcriptase-polymerase chain reaction: glucose transporters Glut1 and Glut4.
    Welch RD, Anderson I, Gorski J.
    Anal Biochem; 1999 Mar 01; 268(1):102-9. PubMed ID: 10036168
    [Abstract] [Full Text] [Related]

  • 9. [Reverse transcriptase PCR (RT-PCR) and quantitative-competitive PCR (QC-PCR)].
    Chung HW.
    Exp Mol Med; 2001 Apr 21; 33(1 Suppl):85-97. PubMed ID: 11708328
    [Abstract] [Full Text] [Related]

  • 10. Detection of breast cancer micrometastases in axillary lymph nodes by means of reverse transcriptase-polymerase chain reaction. Comparison between MUC1 mRNA and keratin 19 mRNA amplification.
    Noguchi S, Aihara T, Motomura K, Inaji H, Imaoka S, Koyama H.
    Am J Pathol; 1996 Feb 21; 148(2):649-56. PubMed ID: 8579127
    [Abstract] [Full Text] [Related]

  • 11. [Competitive RT-PCR assay for quantification of GPI-PLD gene expression].
    Zhang XJ, Lu CP, Tang JH.
    Hunan Yi Ke Da Xue Xue Bao; 2003 Aug 21; 28(4):322-6. PubMed ID: 14653107
    [Abstract] [Full Text] [Related]

  • 12. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR.
    Siebert PD, Larrick JW.
    Biotechniques; 1993 Feb 21; 14(2):244-9. PubMed ID: 7679276
    [Abstract] [Full Text] [Related]

  • 13. Quantification of estrogen receptor messenger RNA by quantitative polymerase chain reaction using internal standard fragment.
    Kagami I, Mizunuma H, Miyamoto S, Ibuki Y, Uchida T.
    Biochem Biophys Res Commun; 1996 Nov 12; 228(2):358-64. PubMed ID: 8920919
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens.
    Merriman-Smith R, Donaldson P, Kistler J.
    Invest Ophthalmol Vis Sci; 1999 Dec 12; 40(13):3224-30. PubMed ID: 10586946
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The insulin-dependent glucose transporter isoform 4 is expressed in bovine blastocysts.
    Navarrete Santos A, Augustin R, Lazzari G, Galli C, Sreenan JM, Fischer B.
    Biochem Biophys Res Commun; 2000 May 19; 271(3):753-60. PubMed ID: 10814535
    [Abstract] [Full Text] [Related]

  • 18. Glucose transporter GLUT1 mRNA expression in the ontogeny of glucose incorporation in mouse preimplantation embryos.
    Morita Y, Tsutsumi O, Oka Y, Taketani Y.
    Biochem Biophys Res Commun; 1994 Mar 30; 199(3):1525-31. PubMed ID: 8147898
    [Abstract] [Full Text] [Related]

  • 19. Expression and sequences of genes encoding glutamate receptors and transporters in primate retina determined using 3'-end amplification polymerase chain reaction.
    Hanna MC, Calkins DJ.
    Mol Vis; 2006 Aug 17; 12():961-76. PubMed ID: 16943768
    [Abstract] [Full Text] [Related]

  • 20. Competitive reverse-transcriptase polymerase chain reaction without an artificial internal standard.
    Zenilman ME, Graham W, Tanner K, Shuldiner AR.
    Anal Biochem; 1995 Jan 01; 224(1):339-46. PubMed ID: 7535986
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.