These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 7515481

  • 1. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene.
    Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O, Takano H, Noda T.
    Nature; 1994 Jun 16; 369(6481):556-9. PubMed ID: 7515481
    [Abstract] [Full Text] [Related]

  • 2. [Excitation-contraction uncoupling and muscular degeneration lacking functional skeletal muscle ryanodine-receptor gene].
    Nishi M.
    Tanpakushitsu Kakusan Koso; 1995 Oct 16; 40(14):2181-7. PubMed ID: 8532874
    [No Abstract] [Full Text] [Related]

  • 3. Involvement of the dihydropyridine receptor and internal Ca2+ stores in myoblast fusion.
    Seigneurin-Venin S, Parrish E, Marty I, Rieger F, Romey G, Villaz M, Garcia L.
    Exp Cell Res; 1996 Mar 15; 223(2):301-7. PubMed ID: 8601407
    [Abstract] [Full Text] [Related]

  • 4. Genomic organization of the porcine skeletal muscle ryanodine receptor (RYR1) gene coding region 4624 to 7929.
    Leeb T, Schmölzl S, Brem G, Brenig B.
    Genomics; 1993 Nov 15; 18(2):349-54. PubMed ID: 8288238
    [Abstract] [Full Text] [Related]

  • 5. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF.
    Clin Exp Pharmacol Physiol; 2006 Sep 15; 33(9):763-72. PubMed ID: 16922804
    [Abstract] [Full Text] [Related]

  • 6. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling.
    Tanabe T, Beam KG, Adams BA, Niidome T, Numa S.
    Nature; 1990 Aug 09; 346(6284):567-9. PubMed ID: 2165570
    [Abstract] [Full Text] [Related]

  • 7. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor.
    Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD.
    Nature; 1996 Mar 07; 380(6569):72-5. PubMed ID: 8598910
    [Abstract] [Full Text] [Related]

  • 8. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1.
    Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K, Takeshima H.
    J Cell Biol; 2001 Sep 03; 154(5):1059-67. PubMed ID: 11535622
    [Abstract] [Full Text] [Related]

  • 9. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2.
    Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M.
    EMBO J; 1998 Jun 15; 17(12):3309-16. PubMed ID: 9628868
    [Abstract] [Full Text] [Related]

  • 10. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA.
    Tanabe T, Mikami A, Numa S, Beam KG.
    Nature; 1990 Mar 29; 344(6265):451-3. PubMed ID: 2157159
    [Abstract] [Full Text] [Related]

  • 11. Structure and molecular organisation of the sarcoplasmic reticulum of skeletal muscle fibers.
    Sorrentino V, Gerli R.
    Ital J Anat Embryol; 2003 Mar 29; 108(2):65-76. PubMed ID: 14503655
    [Abstract] [Full Text] [Related]

  • 12. Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype.
    Airey JA, Deerinck TJ, Ellisman MH, Houenou LJ, Ivanenko A, Kenyon JL, McKemy DD, Sutko JL.
    Dev Dyn; 1993 Jul 29; 197(3):189-202. PubMed ID: 8219360
    [Abstract] [Full Text] [Related]

  • 13. Regulation of excitation contraction coupling by insulin-like growth factor-1 in aging skeletal muscle.
    Delbono O.
    J Nutr Health Aging; 2000 Jul 29; 4(3):162-4. PubMed ID: 10936903
    [Abstract] [Full Text] [Related]

  • 14. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H, Takeshima H, Nishimura S, Takahashi M, Tanabe T, Flockerzi V, Hofmann F, Franzini-Armstrong C.
    J Muscle Res Cell Motil; 1995 Oct 29; 16(5):465-80. PubMed ID: 8567934
    [Abstract] [Full Text] [Related]

  • 15. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor.
    Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T.
    Nature; 1989 Jun 08; 339(6224):439-45. PubMed ID: 2725677
    [Abstract] [Full Text] [Related]

  • 16. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
    Brillantes AM, Bezprozvannaya S, Marks AR.
    Circ Res; 1994 Sep 08; 75(3):503-10. PubMed ID: 8062423
    [Abstract] [Full Text] [Related]

  • 17. [Structure and expression of the porcine skeletal muscle ryanodine receptor gene].
    Brenig B, Schmoelzl S, Leeb T, Wen G, Reinhart B, Baum-Gartner B, Krempler A.
    Dtsch Tierarztl Wochenschr; 1996 Oct 08; 103(10):394-9. PubMed ID: 9035969
    [Abstract] [Full Text] [Related]

  • 18. Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor alpha 1 subunit required for activation of skeletal muscle-type excitation-contraction coupling.
    El-Hayek R, Ikemoto N.
    Biochemistry; 1998 May 12; 37(19):7015-20. PubMed ID: 9578589
    [Abstract] [Full Text] [Related]

  • 19. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells.
    Beam KG, Knudson CM, Powell JA.
    Nature; 1998 May 12; 320(6058):168-70. PubMed ID: 2419767
    [Abstract] [Full Text] [Related]

  • 20. An abnormal ketamine response in mutants defective in the ryanodine receptor gene ryr-1 (unc-68) of Caenorhabditis elegans.
    Sakube Y, Ando H, Kagawa H.
    J Mol Biol; 1997 Apr 11; 267(4):849-64. PubMed ID: 9135117
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.