These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 7530246
1. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. Carson MR, Travis SM, Welsh MJ. J Biol Chem; 1995 Jan 27; 270(4):1711-7. PubMed ID: 7530246 [Abstract] [Full Text] [Related]
2. Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains. Powe AC, Al-Nakkash L, Li M, Hwang TC. J Physiol; 2002 Mar 01; 539(Pt 2):333-46. PubMed ID: 11882668 [Abstract] [Full Text] [Related]
3. Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. Aleksandrov L, Mengos A, Chang X, Aleksandrov A, Riordan JR. J Biol Chem; 2001 Apr 20; 276(16):12918-23. PubMed ID: 11279083 [Abstract] [Full Text] [Related]
4. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C, Vergani P, Nairn AC, Gadsby DC. J Gen Physiol; 2003 Sep 20; 122(3):333-48. PubMed ID: 12939393 [Abstract] [Full Text] [Related]
5. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating. Fu J, Ji HL, Naren AP, Kirk KL. J Physiol; 2001 Oct 15; 536(Pt 2):459-70. PubMed ID: 11600681 [Abstract] [Full Text] [Related]
7. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations. Okeyo G, Wang W, Wei S, Kirk KL. J Biol Chem; 2013 Jun 14; 288(24):17122-33. PubMed ID: 23620589 [Abstract] [Full Text] [Related]
8. On the mechanism of MgATP-dependent gating of CFTR Cl- channels. Vergani P, Nairn AC, Gadsby DC. J Gen Physiol; 2003 Jan 14; 121(1):17-36. PubMed ID: 12508051 [Abstract] [Full Text] [Related]
9. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. Zeltwanger S, Wang F, Wang GT, Gillis KD, Hwang TC. J Gen Physiol; 1999 Apr 14; 113(4):541-54. PubMed ID: 10102935 [Abstract] [Full Text] [Related]
10. Covalent modification of the nucleotide binding domains of cystic fibrosis transmembrane conductance regulator. Cotten JF, Welsh MJ. J Biol Chem; 1998 Nov 27; 273(48):31873-9. PubMed ID: 9822656 [Abstract] [Full Text] [Related]
11. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Gentzsch M, Aleksandrov A, Aleksandrov L, Riordan JR. Biochem J; 2002 Sep 01; 366(Pt 2):541-8. PubMed ID: 12020354 [Abstract] [Full Text] [Related]
12. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain. Berger AL, Ikuma M, Welsh MJ. Proc Natl Acad Sci U S A; 2005 Jan 11; 102(2):455-60. PubMed ID: 15623556 [Abstract] [Full Text] [Related]
13. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z, Wang X, Liu HY, Zou X, Li M, Hwang TC. J Gen Physiol; 2006 Oct 11; 128(4):413-22. PubMed ID: 16966475 [Abstract] [Full Text] [Related]
14. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Anderson MP, Welsh MJ. Science; 1992 Sep 18; 257(5077):1701-4. PubMed ID: 1382316 [Abstract] [Full Text] [Related]
15. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL, Kirk KL. J Biol Chem; 2014 Jul 18; 289(29):19942-57. PubMed ID: 24876383 [Abstract] [Full Text] [Related]
16. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD, Borchardt R, Kole J, Kaz AM, Randak C, Cohn JA. Biochem J; 2004 Feb 15; 378(Pt 1):151-9. PubMed ID: 14602047 [Abstract] [Full Text] [Related]
17. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L, Chan KW, Nairn AC, Gadsby DC. J Gen Physiol; 2005 Jan 15; 125(1):43-55. PubMed ID: 15596536 [Abstract] [Full Text] [Related]
18. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W, Bernard K, Li G, Kirk KL. J Biol Chem; 2007 Feb 16; 282(7):4533-4544. PubMed ID: 17178710 [Abstract] [Full Text] [Related]
19. Strict coupling between CFTR's catalytic cycle and gating of its Cl- ion pore revealed by distributions of open channel burst durations. Csanády L, Vergani P, Gadsby DC. Proc Natl Acad Sci U S A; 2010 Jan 19; 107(3):1241-6. PubMed ID: 19966305 [Abstract] [Full Text] [Related]
20. The H-loop in the second nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator is required for efficient chloride channel closing. Kloch M, Milewski M, Nurowska E, Dworakowska B, Cutting GR, Dołowy K. Cell Physiol Biochem; 2010 Jan 19; 25(2-3):169-80. PubMed ID: 20110677 [Abstract] [Full Text] [Related] Page: [Next] [New Search]