These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Comparative patch clamp studies on the kinetics and selectivity of glutamate receptor antagonism by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) and 1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine (GYKI 52466). Parsons CG, Gruner R, Rozental J. Neuropharmacology; 1994 May; 33(5):589-604. PubMed ID: 7523977 [Abstract] [Full Text] [Related]
5. Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemisected spinal cord in vitro. Zeman S, Lodge D. Br J Pharmacol; 1992 Jun; 106(2):367-72. PubMed ID: 1382781 [Abstract] [Full Text] [Related]
6. Effects of phencyclidine on spontaneous and excitatory amino acid-induced activity of ventral tegmental dopamine neurons: an extracellular in vitro study. Wang T, French ED. Life Sci; 1993 Jun; 53(1):49-56. PubMed ID: 7685848 [Abstract] [Full Text] [Related]
7. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Kristensen BW, Noraberg J, Zimmer J. Brain Res; 2001 Oct 26; 917(1):21-44. PubMed ID: 11602227 [Abstract] [Full Text] [Related]
8. Effects of corticosterone on excitatory amino acid responses in dopamine-sensitive neurons in the ventral tegmental area. Cho K, Little HJ. Neuroscience; 1999 Oct 26; 88(3):837-45. PubMed ID: 10363821 [Abstract] [Full Text] [Related]
9. NMDA and AMPA receptors evoke transmitter release from noradrenergic axon terminals in the rat spinal cord. Sundström E, Holmberg L, Souverbie F. Neurochem Res; 1998 Dec 26; 23(12):1501-7. PubMed ID: 9821153 [Abstract] [Full Text] [Related]
10. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials. Randle JC, Guet T, Bobichon C, Moreau C, Curutchet P, Lambolez B, de Carvalho LP, Cordi A, Lepagnol JM. Mol Pharmacol; 1992 Feb 26; 41(2):337-45. PubMed ID: 1371583 [Abstract] [Full Text] [Related]
11. Influence of excitatory amino acid receptor subtypes on the electrophysiological activity of dopaminergic and nondopaminergic neurons in rat substantia nigra. Zhang J, Chiodo LA, Freeman AS. J Pharmacol Exp Ther; 1994 Apr 26; 269(1):313-21. PubMed ID: 7513359 [Abstract] [Full Text] [Related]
12. Neuronal damage induced by beta-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Willis CL, Meldrum BS, Nunn PB, Anderton BH, Leigh PN. Brain Res; 1993 Nov 05; 627(1):55-62. PubMed ID: 7507397 [Abstract] [Full Text] [Related]
13. N-methyl-D-aspartic acid biphasically regulates the biochemical and electrophysiological response of A10 dopamine neurons in the ventral tegmental area: in vivo microdialysis and in vitro electrophysiological studies. Wang T, O'Connor WT, Ungerstedt U, French ED. Brain Res; 1994 Dec 15; 666(2):255-62. PubMed ID: 7882036 [Abstract] [Full Text] [Related]
17. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors. Christoffersen CL, Meltzer LT. Neuroscience; 1995 Jul 11; 67(2):373-81. PubMed ID: 7545793 [Abstract] [Full Text] [Related]
18. Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat. Zhang J, Mifflin SW. J Physiol; 1998 Sep 15; 511 ( Pt 3)(Pt 3):733-45. PubMed ID: 9714856 [Abstract] [Full Text] [Related]