These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Expression and characterization of the reverse transcriptase enzyme from type 1 human immunodeficiency virus using different baculoviral vector systems. Pekrun K, Petry H, Jentsch KD, Moosmayer D, Hunsmann G, Lüke W. Eur J Biochem; 1995 Dec 15; 234(3):811-8. PubMed ID: 8575439 [Abstract] [Full Text] [Related]
7. Reconstitution and properties of homologous and chimeric HIV-1.HIV-2 p66.p51 reverse transcriptase. Howard KJ, Frank KB, Sim IS, Le Grice SF. J Biol Chem; 1991 Dec 05; 266(34):23003-9. PubMed ID: 1720776 [Abstract] [Full Text] [Related]
8. Identification of a human immunodeficiency virus-1 protease cleavage site within the 66,000 Dalton subunit of reverse transcriptase. Graves MC, Meidel MC, Pan YC, Manneberg M, Lahm HW, Grüninger-Leitch F. Biochem Biophys Res Commun; 1990 Apr 16; 168(1):30-6. PubMed ID: 1691640 [Abstract] [Full Text] [Related]
9. Comparative purification of recombinant HIV-1 and HIV-2 reverse transcriptase: preparation of heterodimeric enzyme devoid of unprocessed gene product. Warren TC, Miglietta JJ, Shrutkowski A, Rose JM, Rogers SL, Lubbe K, Shih CK, Caviness GO, Ingraham R, Palladino DE. Protein Expr Purif; 1992 Dec 16; 3(6):479-87. PubMed ID: 1283095 [Abstract] [Full Text] [Related]
10. Specificity and inhibition of proteases from human immunodeficiency viruses 1 and 2. Tomasselli AG, Hui JO, Sawyer TK, Staples DJ, Bannow C, Reardon IM, Howe WJ, DeCamp DL, Craik CS, Heinrikson RL. J Biol Chem; 1990 Aug 25; 265(24):14675-83. PubMed ID: 2201691 [Abstract] [Full Text] [Related]
13. Disruption of a salt bridge between Asp 488 and Lys 465 in HIV-1 reverse transcriptase alters its proteolytic processing and polymerase activity. Goobar-Larsson L, Bäckbro K, Unge T, Bhikhabhai R, Vrang L, Zhang H, Orvell C, Strandberg B, Oberg B. Virology; 1993 Oct 25; 196(2):731-8. PubMed ID: 7690504 [Abstract] [Full Text] [Related]
14. Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji J, Hardy RW, Rossi JJ, Burke DH. J Virol; 2007 May 25; 81(10):5375-84. PubMed ID: 17329328 [Abstract] [Full Text] [Related]
16. Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase. Hostomska Z, Matthews DA, Davies JF, Nodes BR, Hostomsky Z. J Biol Chem; 1991 Aug 05; 266(22):14697-702. PubMed ID: 1713588 [Abstract] [Full Text] [Related]
17. Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation. Sluis-Cremer N, Arion D, Abram ME, Parniak MA. Int J Biochem Cell Biol; 2004 Sep 05; 36(9):1836-47. PubMed ID: 15183348 [Abstract] [Full Text] [Related]
18. Cloning, expression, purification, and crystallisation of HIV-2 reverse transcriptase. Bird LE, Chamberlain PP, Stewart-Jones GB, Ren J, Stuart DI, Stammers DK. Protein Expr Purif; 2003 Jan 05; 27(1):12-8. PubMed ID: 12509979 [Abstract] [Full Text] [Related]
19. The catalytic functions of chimeric reverse transcriptases of human immunodeficiency viruses type 1 and type 2. Shaharabany M, Hizi A. J Biol Chem; 1992 Feb 25; 267(6):3674-8. PubMed ID: 1371274 [Abstract] [Full Text] [Related]