These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 7540671

  • 1. mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons.
    Rusin KI, Moises HC.
    J Neurosci; 1995 Jun; 15(6):4315-27. PubMed ID: 7540671
    [Abstract] [Full Text] [Related]

  • 2. Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
    Rusin KI, Moises HC.
    Neuroscience; 1998 Aug; 85(3):939-56. PubMed ID: 9639286
    [Abstract] [Full Text] [Related]

  • 3. Mu- and kappa-opioid receptors selectively reduce the same transient components of high-threshold calcium current in rat dorsal root ganglion sensory neurons.
    Moises HC, Rusin KI, Macdonald RL.
    J Neurosci; 1994 Oct; 14(10):5903-16. PubMed ID: 7931552
    [Abstract] [Full Text] [Related]

  • 4. Multiple calcium channel subtypes in isolated rat chromaffin cells.
    Gandía L, Borges R, Albillos A, García AG.
    Pflugers Arch; 1995 May; 430(1):55-63. PubMed ID: 7545281
    [Abstract] [Full Text] [Related]

  • 5. Effects of N-, P- and Q-type neuronal calcium channel antagonists on mammalian peripheral neurotransmission.
    Wright CE, Angus JA.
    Br J Pharmacol; 1996 Sep; 119(1):49-56. PubMed ID: 8872356
    [Abstract] [Full Text] [Related]

  • 6. The use of invertebrate peptide toxins to establish Ca2+ channel identity of CA3-CA1 neurotransmission in rat hippocampal slices.
    Nooney JM, Lodge D.
    Eur J Pharmacol; 1996 Jun 13; 306(1-3):41-50. PubMed ID: 8813613
    [Abstract] [Full Text] [Related]

  • 7. Block of non-L-, non-N-type Ca2+ channels in rat insulinoma RINm5F cells by omega-agatoxin IVA and omega-conotoxin MVIIC.
    Magnelli V, Pollo A, Sher E, Carbone E.
    Pflugers Arch; 1995 Apr 13; 429(6):762-71. PubMed ID: 7603830
    [Abstract] [Full Text] [Related]

  • 8. Conotoxin-sensitive and conotoxin-resistant Ca2+ currents in fish retinal ganglion cells.
    Bindokas VP, Ishida AT.
    J Neurobiol; 1996 Apr 13; 29(4):429-44. PubMed ID: 8656209
    [Abstract] [Full Text] [Related]

  • 9. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons.
    Pineda JC, Waters RS, Foehring RC.
    J Neurophysiol; 1998 May 13; 79(5):2522-34. PubMed ID: 9582225
    [Abstract] [Full Text] [Related]

  • 10. Separation of calcium channel current components in mouse chromaffin cells superfused with low- and high-barium solutions.
    Hernández-Guijo JM, de Pascual R, García AG, Gandía L.
    Pflugers Arch; 1998 Jun 13; 436(1):75-82. PubMed ID: 9560449
    [Abstract] [Full Text] [Related]

  • 11. Multiple types of Ca2+ channels in mouse motor nerve terminals.
    Lin MJ, Lin-Shiau SY.
    Eur J Neurosci; 1997 Apr 13; 9(4):817-23. PubMed ID: 9153589
    [Abstract] [Full Text] [Related]

  • 12. Distribution of dihydropyridine and omega-conotoxin-sensitive calcium currents in acutely isolated rat and frog sensory neuron somata: diameter-dependent L channel expression in frog.
    Scroggs RS, Fox AP.
    J Neurosci; 1991 May 13; 11(5):1334-46. PubMed ID: 1709205
    [Abstract] [Full Text] [Related]

  • 13. Retinal ganglion neurons express a toxin-resistant developmentally regulated novel type of high-voltage-activated calcium channel.
    Rothe T, Grantyn R.
    J Neurophysiol; 1994 Nov 13; 72(5):2542-6. PubMed ID: 7884480
    [Abstract] [Full Text] [Related]

  • 14. Developmental changes in presynaptic calcium channels coupled to glutamate release in cultured rat hippocampal neurons.
    Scholz KP, Miller RJ.
    J Neurosci; 1995 Jun 13; 15(6):4612-7. PubMed ID: 7790927
    [Abstract] [Full Text] [Related]

  • 15. Biophysical and pharmacological diversity of high-voltage-activated calcium currents in layer II neurones of guinea-pig piriform cortex.
    Magistretti J, Brevi S, de Curtis M.
    J Physiol; 1999 Aug 01; 518 ( Pt 3)(Pt 3):705-20. PubMed ID: 10420008
    [Abstract] [Full Text] [Related]

  • 16. Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels.
    Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, Snutch TP.
    Proc Natl Acad Sci U S A; 1994 Oct 25; 91(22):10576-80. PubMed ID: 7524096
    [Abstract] [Full Text] [Related]

  • 17. The contribution of different types of calcium channels to electrically-evoked adenosine release from rat hippocampal slices.
    Latini S, Pedata F, Pepeu G.
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Feb 25; 355(2):250-5. PubMed ID: 9050019
    [Abstract] [Full Text] [Related]

  • 18. P-type calcium channels in rat neocortical neurones.
    Brown AM, Sayer RJ, Schwindt PC, Crill WE.
    J Physiol; 1994 Mar 01; 475(2):197-205. PubMed ID: 7517449
    [Abstract] [Full Text] [Related]

  • 19. Biophysical and pharmacological characterization of voltage-dependent Ca2+ channels in neurons isolated from rat nucleus accumbens.
    Churchill D, Macvicar BA.
    J Neurophysiol; 1998 Feb 01; 79(2):635-47. PubMed ID: 9463427
    [Abstract] [Full Text] [Related]

  • 20. Interactions among toxins that inhibit N-type and P-type calcium channels.
    McDonough SI, Boland LM, Mintz IM, Bean BP.
    J Gen Physiol; 2002 Apr 01; 119(4):313-28. PubMed ID: 11929883
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.