These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 7544404
21. Photoreceptor outer segment development in Xenopus laevis: influence of the pigment epithelium. Stiemke MM, Landers RA, al-Ubaidi MR, Rayborn ME, Hollyfield JG. Dev Biol; 1994 Mar; 162(1):169-80. PubMed ID: 8125184 [Abstract] [Full Text] [Related]
22. Lectin and antibody labelling of developing rat photoreceptor cells: an electron microscope immunocytochemical study. Hicks D, Barnstable CJ. J Neurocytol; 1986 Apr; 15(2):219-30. PubMed ID: 3755163 [Abstract] [Full Text] [Related]
23. Tunicamycin does not inhibit transport of phosphatidylinositol to Xenopus rod outer segments. Wetzel MG, Bendala-Tufanisco E, Besharse JC. J Neurocytol; 1993 May; 22(5):397-412. PubMed ID: 8315416 [Abstract] [Full Text] [Related]
24. Rod disc renewal occurs by evagination of the ciliary plasma membrane that makes cadherin-based contacts with the inner segment. Burgoyne T, Meschede IP, Burden JJ, Bailly M, Seabra MC, Futter CE. Proc Natl Acad Sci U S A; 2015 Dec 29; 112(52):15922-7. PubMed ID: 26668363 [Abstract] [Full Text] [Related]
25. Effects of retinal detachment on rod disc membrane assembly in cultured frog retinas. Hale IL, Fisher SK, Matsumoto B. Invest Ophthalmol Vis Sci; 1991 Oct 29; 32(11):2873-81. PubMed ID: 1833357 [Abstract] [Full Text] [Related]
26. Immunocytochemical demonstration of visual pigments in the degenerate retinal and pineal photoreceptors of the blind cave salamander (Proteus anguinus). Kos M, Bulog B, Szél A, Röhlich P. Cell Tissue Res; 2001 Jan 29; 303(1):15-25. PubMed ID: 11236001 [Abstract] [Full Text] [Related]
27. Localization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration. Arikawa K, Molday LL, Molday RS, Williams DS. J Cell Biol; 1992 Feb 29; 116(3):659-67. PubMed ID: 1730772 [Abstract] [Full Text] [Related]
28. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. Fliesler SJ, Rayborn ME, Hollyfield JG. J Cell Biol; 1985 Feb 29; 100(2):574-87. PubMed ID: 3155750 [Abstract] [Full Text] [Related]
29. The zebrafish ultraviolet cone opsin reported previously is expressed in rods. Raymond PA, Barthel LK, Stenkamp DL. Invest Ophthalmol Vis Sci; 1996 Apr 29; 37(5):948-50. PubMed ID: 8603882 [Abstract] [Full Text] [Related]
30. Distribution of membrane proteins in mechanically dissociated retinal rods. Spencer M, Detwiler PB, Bunt-Milam AH. Invest Ophthalmol Vis Sci; 1988 Jul 29; 29(7):1012-20. PubMed ID: 2843476 [Abstract] [Full Text] [Related]
31. Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation. Chaitin MH, Schneider BG, Hall MO, Papermaster DS. J Cell Biol; 1984 Jul 29; 99(1 Pt 1):239-47. PubMed ID: 6610682 [Abstract] [Full Text] [Related]
32. Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms. Korf B, Rollag MD, Korf HW. Cell Tissue Res; 1989 Nov 29; 258(2):319-29. PubMed ID: 2531037 [Abstract] [Full Text] [Related]
33. Evidence from normal and degenerating photoreceptors that two outer segment integral membrane proteins have separate transport pathways. Fariss RN, Molday RS, Fisher SK, Matsumoto B. J Comp Neurol; 1997 Oct 13; 387(1):148-56. PubMed ID: 9331178 [Abstract] [Full Text] [Related]
34. Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Tamotsu S, Korf HW, Morita Y, Oksche A. Cell Tissue Res; 1990 Nov 13; 262(2):205-16. PubMed ID: 2150185 [Abstract] [Full Text] [Related]
35. Membrane addition to rod photoreceptor outer segments: light stimulates membrane assembly in the absence of increased membrane biosynthesis. Hollyfield JG, Rayborn ME, Verner GE, Maude MB, Anderson RE. Invest Ophthalmol Vis Sci; 1982 Apr 13; 22(4):417-27. PubMed ID: 6460718 [Abstract] [Full Text] [Related]
36. Presence and foveal enrichment of rod opsin in the "all cone" retina of the American chameleon. McDevitt DS, Brahma SK, Jeanny JC, Hicks D. Anat Rec; 1993 Nov 13; 237(3):299-307. PubMed ID: 8291682 [Abstract] [Full Text] [Related]
37. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration. Lin-Jones J, Parker E, Wu M, Knox BE, Burnside B. Invest Ophthalmol Vis Sci; 2003 Aug 13; 44(8):3614-21. PubMed ID: 12882815 [Abstract] [Full Text] [Related]
38. Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. II. Quantitative freeze-fracture analysis. Defoe DM, Besharse JC, Fliesler SJ. Invest Ophthalmol Vis Sci; 1986 Nov 13; 27(11):1595-601. PubMed ID: 3771140 [Abstract] [Full Text] [Related]
39. Development and maintenance of outer segments by isolated chick embryo photoreceptor cells in culture. Saga T, Scheurer D, Adler R. Invest Ophthalmol Vis Sci; 1996 Mar 13; 37(4):561-73. PubMed ID: 8595956 [Abstract] [Full Text] [Related]
40. Opsin distribution and protein incorporation in photoreceptors after experimental retinal detachment. Lewis GP, Erickson PA, Anderson DH, Fisher SK. Exp Eye Res; 1991 Nov 13; 53(5):629-40. PubMed ID: 1835933 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]