These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 7547883

  • 1. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases.
    Hosea NA, Berman HA, Taylor P.
    Biochemistry; 1995 Sep 12; 34(36):11528-36. PubMed ID: 7547883
    [Abstract] [Full Text] [Related]

  • 2. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
    Kovarik Z, Radić Z, Berman HA, Simeon-Rudolf V, Reiner E, Taylor P.
    Biochemistry; 2004 Mar 23; 43(11):3222-9. PubMed ID: 15023072
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Determining ligand orientation and transphosphonylation mechanisms on acetylcholinesterase by Rp, Sp enantiomer selectivity and site-specific mutagenesis.
    Taylor P, Hosea NA, Tsigelny I, Radić Z, Berman HA.
    Enantiomer; 1997 Mar 23; 2(3-4):249-60. PubMed ID: 9676269
    [Abstract] [Full Text] [Related]

  • 5. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates.
    Hosea NA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P.
    Biochemistry; 1996 Aug 20; 35(33):10995-1004. PubMed ID: 8718893
    [Abstract] [Full Text] [Related]

  • 6. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity.
    Vellom DC, Radić Z, Li Y, Pickering NA, Camp S, Taylor P.
    Biochemistry; 1993 Jan 12; 32(1):12-7. PubMed ID: 8418833
    [Abstract] [Full Text] [Related]

  • 7. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors.
    Radić Z, Pickering NA, Vellom DC, Camp S, Taylor P.
    Biochemistry; 1993 Nov 16; 32(45):12074-84. PubMed ID: 8218285
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D, Ordentlich A, Barak D, Ariel N, Kronman C, Velan B, Shafferman A.
    Biochemistry; 2001 Jun 26; 40(25):7433-45. PubMed ID: 11412096
    [Abstract] [Full Text] [Related]

  • 10. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol.
    Bosak A, Gazić I, Vinković V, Kovarik Z.
    Arch Biochem Biophys; 2008 Mar 01; 471(1):72-6. PubMed ID: 18167304
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket.
    Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y, Ariel N, Cohen S, Velan B, Shafferman A.
    J Biol Chem; 1993 Aug 15; 268(23):17083-95. PubMed ID: 8349597
    [Abstract] [Full Text] [Related]

  • 13. Chiral nature of covalent methylphosphonyl conjugates of acetylcholinesterase.
    Berman HA, Decker MM.
    J Biol Chem; 1989 Mar 05; 264(7):3951-6. PubMed ID: 2917984
    [Abstract] [Full Text] [Related]

  • 14. Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates.
    Kovarik Z, Radić Z, Berman HA, Taylor P.
    Toxicology; 2007 Apr 20; 233(1-3):79-84. PubMed ID: 17046138
    [Abstract] [Full Text] [Related]

  • 15. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline.
    Kovarik Z, Radić Z, Grgas B, Skrinjarić-Spoljar M, Reiner E, Simeon-Rudolf V.
    Biochim Biophys Acta; 1999 Aug 17; 1433(1-2):261-71. PubMed ID: 10446376
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.
    Saxena A, Redman AM, Jiang X, Lockridge O, Doctor BP.
    Biochemistry; 1997 Dec 02; 36(48):14642-51. PubMed ID: 9398183
    [Abstract] [Full Text] [Related]

  • 18. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL.
    Biochemistry; 2003 May 13; 42(18):5438-52. PubMed ID: 12731886
    [Abstract] [Full Text] [Related]

  • 19. Chiral reactions of acetylcholinesterase probed with enantiomeric methylphosphonothioates. Noncovalent determinants of enzyme chirality.
    Berman HA, Leonard K.
    J Biol Chem; 1989 Mar 05; 264(7):3942-50. PubMed ID: 2917983
    [Abstract] [Full Text] [Related]

  • 20. Allosteric control of acetylcholinesterase catalysis by fasciculin.
    Radić Z, Quinn DM, Vellom DC, Camp S, Taylor P.
    J Biol Chem; 1995 Sep 01; 270(35):20391-9. PubMed ID: 7657613
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.