These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
179 related items for PubMed ID: 7547945
1. Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins. Druckmann S, Ottolenghi M, Rousso I, Friedman N, Sheves M. Biochemistry; 1995 Sep 19; 34(37):12066-74. PubMed ID: 7547945 [Abstract] [Full Text] [Related]
2. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Rousso I, Friedman N, Sheves M, Ottolenghi M. Biochemistry; 1995 Sep 19; 34(37):12059-65. PubMed ID: 7547944 [Abstract] [Full Text] [Related]
3. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements. Bondar AN, Suhai S, Fischer S, Smith JC, Elstner M. J Struct Biol; 2007 Mar 19; 157(3):454-69. PubMed ID: 17189704 [Abstract] [Full Text] [Related]
4. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model. Brown LS, Dioumaev AK, Needleman R, Lanyi JK. Biophys J; 1998 Sep 19; 75(3):1455-65. PubMed ID: 9726947 [Abstract] [Full Text] [Related]
5. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin. Balashov SP, Govindjee R, Imasheva ES, Misra S, Ebrey TG, Feng Y, Crouch RK, Menick DR. Biochemistry; 1995 Jul 11; 34(27):8820-34. PubMed ID: 7612623 [Abstract] [Full Text] [Related]
6. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES, Balashov SP, Ebrey TG, Chen N, Crouch RK, Menick DR. Biophys J; 1999 Nov 11; 77(5):2750-63. PubMed ID: 10545374 [Abstract] [Full Text] [Related]
7. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. Needleman R, Chang M, Ni B, Váró G, Fornés J, White SH, Lanyi JK. J Biol Chem; 1991 Jun 25; 266(18):11478-84. PubMed ID: 1646807 [Abstract] [Full Text] [Related]
8. The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals. Sanii LS, Schill AW, Moran CE, El-Sayed MA. Biophys J; 2005 Jul 25; 89(1):444-51. PubMed ID: 15821169 [Abstract] [Full Text] [Related]
9. Contribution of proton release to the B2 photocurrent of bacteriorhodopsin. Misra S. Biophys J; 1998 Jul 25; 75(1):382-8. PubMed ID: 9649395 [Abstract] [Full Text] [Related]
10. Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base. Subramaniam S, Greenhalgh DA, Khorana HG. J Biol Chem; 1992 Dec 25; 267(36):25730-3. PubMed ID: 1464589 [Abstract] [Full Text] [Related]
11. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin. Govindjee R, Misra S, Balashov SP, Ebrey TG, Crouch RK, Menick DR. Biophys J; 1996 Aug 25; 71(2):1011-23. PubMed ID: 8842238 [Abstract] [Full Text] [Related]
12. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy. Morgan JE, Vakkasoglu AS, Lugtenburg J, Gennis RB, Maeda A. Biochemistry; 2008 Nov 04; 47(44):11598-605. PubMed ID: 18837559 [Abstract] [Full Text] [Related]
13. Effect of the arginine-82 to alanine mutation in bacteriorhodopsin on dark adaptation, proton release, and the photochemical cycle. Balashov SP, Govindjee R, Kono M, Imasheva E, Lukashev E, Ebrey TG, Crouch RK, Menick DR, Feng Y. Biochemistry; 1993 Oct 05; 32(39):10331-43. PubMed ID: 8399176 [Abstract] [Full Text] [Related]
14. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U, Asato AE, Sheves M. Biochemistry; 2005 Jun 14; 44(23):8479-85. PubMed ID: 15938637 [Abstract] [Full Text] [Related]
15. Factors affecting the formation of an M-like intermediate in the photocycle of 13-cis-bacteriorhodopsin. Steinberg G, Sheves M, Bressler S, Ottolenghi M. Biochemistry; 1994 Oct 18; 33(41):12439-50. PubMed ID: 7918466 [Abstract] [Full Text] [Related]
16. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85. Brown LS, Gat Y, Sheves M, Yamazaki Y, Maeda A, Needleman R, Lanyi JK. Biochemistry; 1994 Oct 11; 33(40):12001-11. PubMed ID: 7918419 [Abstract] [Full Text] [Related]
17. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V, Spudich EN, Scott KL, Spudich JL, Rothschild KJ. Biochemistry; 2000 Mar 21; 39(11):2823-30. PubMed ID: 10715101 [Abstract] [Full Text] [Related]
18. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin. Kandori H. Biochim Biophys Acta; 2004 Jul 23; 1658(1-2):72-9. PubMed ID: 15282177 [Abstract] [Full Text] [Related]
19. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M, Yoshitsugu M, Mizuide N, Ihara K, Kandori H. Biochemistry; 2007 Jun 26; 46(25):7525-35. PubMed ID: 17547422 [Abstract] [Full Text] [Related]
20. Determination of the transiently lowered pKa of the retinal Schiff base during the photocycle of bacteriorhodopsin. Brown LS, Lanyi JK. Proc Natl Acad Sci U S A; 1996 Feb 20; 93(4):1731-4. PubMed ID: 8643698 [Abstract] [Full Text] [Related] Page: [Next] [New Search]