These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 7548

  • 1. Role of L-threonine dehydrogenase in the catabolism of threonine and synthesis of glycine by Escherichia coli.
    Newman EB, Kapoor V, Potter R.
    J Bacteriol; 1976 Jun; 126(3):1245-9. PubMed ID: 7548
    [Abstract] [Full Text] [Related]

  • 2. Role of threonine dehydrogenase in Escherichia coli threonine degradation.
    Potter R, Kapoor V, Newman EB.
    J Bacteriol; 1977 Nov; 132(2):385-91. PubMed ID: 334738
    [Abstract] [Full Text] [Related]

  • 3. Derivation of glycine from threonine in Escherichia coli K-12 mutants.
    Fraser J, Newman EB.
    J Bacteriol; 1975 Jun; 122(3):810-7. PubMed ID: 1097400
    [Abstract] [Full Text] [Related]

  • 4. Growth, enzyme levels, and some metabolic properties of an Escherichia coli mutant grown on L-threonine as the sole carbon source.
    Boylan SA, Dekker EE.
    J Bacteriol; 1983 Oct; 156(1):273-80. PubMed ID: 6413491
    [Abstract] [Full Text] [Related]

  • 5. Utilization of L-threonine by a species of Arthrobacter. A novel catabolic role for "aminoacetone synthase".
    McGilvray D, Morris JG.
    Biochem J; 1969 May; 112(5):657-71. PubMed ID: 5821726
    [Abstract] [Full Text] [Related]

  • 6. Studies on L-serine deaminase in Escherichia coli K-12.
    Isenberg S, Newman EB.
    J Bacteriol; 1974 Apr; 118(1):53-8. PubMed ID: 4595204
    [Abstract] [Full Text] [Related]

  • 7. Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine-NAD+ oxidoreductase.
    Bell SC, Turner JM.
    Biochem J; 1976 May 15; 156(2):449-58. PubMed ID: 942418
    [Abstract] [Full Text] [Related]

  • 8. Microbial metabolism of amino ketones. L-1-aminopropan-2-ol dehydrogenase and L-threonine dehydrogenase in Escherichia coli.
    Turner JM.
    Biochem J; 1967 Jul 15; 104(1):112-21. PubMed ID: 5340733
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR, Dekker EE.
    Arch Biochem Biophys; 1998 Mar 01; 351(1):8-16. PubMed ID: 9500838
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Genetic characterization of a highly efficient alternate pathway of serine biosynthesis in Escherichia coli.
    Ravnikar PD, Somerville RL.
    J Bacteriol; 1987 Jun 01; 169(6):2611-7. PubMed ID: 3108237
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. L-Threonine dehydrogenase of Escherichia coli K-12.
    Boylan SA, Dekker EE.
    Biochem Biophys Res Commun; 1978 Nov 14; 85(1):190-7. PubMed ID: 33672
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Identification of a second active site residue in Escherichia coli L-threonine dehydrogenase: methylation of histidine-90 with methyl p-nitrobenzenesulfonate.
    Marcus JP, Dekker EE.
    Arch Biochem Biophys; 1995 Jan 10; 316(1):413-20. PubMed ID: 7840645
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.