These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 7551024

  • 21. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway.
    Crauwels M, Donaton MCV, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM.
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2627-2637. PubMed ID: 9274016
    [Abstract] [Full Text] [Related]

  • 22. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae.
    Giots F, Donaton MC, Thevelein JM.
    Mol Microbiol; 2003 Feb; 47(4):1163-81. PubMed ID: 12581367
    [Abstract] [Full Text] [Related]

  • 23. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses.
    Park JI, Grant CM, Dawes IW.
    Biochem Biophys Res Commun; 2005 Feb 04; 327(1):311-9. PubMed ID: 15629464
    [Abstract] [Full Text] [Related]

  • 24. Genetic analysis of the sam mutations, which induce sexual development with no requirement for nutritional starvation in fission yeast.
    Katayama S, Ozoe F, Kurokawa R, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M.
    Biosci Biotechnol Biochem; 1996 Jun 04; 60(6):994-9. PubMed ID: 8695917
    [Abstract] [Full Text] [Related]

  • 25. The control of morphogenesis in Saccharomyces cerevisiae by Elm1 kinase is responsive to RAS/cAMP pathway activity and tryptophan availability.
    Garrett JM.
    Mol Microbiol; 1997 Nov 04; 26(4):809-20. PubMed ID: 9427410
    [Abstract] [Full Text] [Related]

  • 26. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations.
    Yin Z, Hatton L, Brown AJ.
    Mol Microbiol; 2000 Feb 04; 35(3):553-65. PubMed ID: 10672178
    [Abstract] [Full Text] [Related]

  • 27. Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger.
    Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM.
    J Gen Microbiol; 1992 Oct 04; 138(10):2035-43. PubMed ID: 1336029
    [Abstract] [Full Text] [Related]

  • 28. The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase.
    François J, Neves MJ, Hers HG.
    Yeast; 1991 Oct 04; 7(6):575-87. PubMed ID: 1662849
    [Abstract] [Full Text] [Related]

  • 29. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state.
    De Winde JH, Crauwels M, Hohmann S, Thevelein JM, Winderickx J.
    Eur J Biochem; 1996 Oct 15; 241(2):633-43. PubMed ID: 8917466
    [Abstract] [Full Text] [Related]

  • 30. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
    Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J.
    Yeast; 1999 Feb 15; 15(3):191-203. PubMed ID: 10077186
    [Abstract] [Full Text] [Related]

  • 31. Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway.
    Bissinger PH, Wieser R, Hamilton B, Ruis H.
    Mol Cell Biol; 1989 Mar 15; 9(3):1309-15. PubMed ID: 2542766
    [Abstract] [Full Text] [Related]

  • 32. Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources.
    Pernambuco MB, Winderickx J, Crauwels M, Griffioen G, Mager WH, Thevelein JM.
    Microbiology (Reading); 1996 Jul 15; 142 ( Pt 7)():1775-82. PubMed ID: 8757741
    [Abstract] [Full Text] [Related]

  • 33. Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast.
    Tokiwa G, Tyers M, Volpe T, Futcher B.
    Nature; 1994 Sep 22; 371(6495):342-5. PubMed ID: 8090204
    [Abstract] [Full Text] [Related]

  • 34. The C-terminal part of the CDC25 gene product plays a key role in signal transduction in the glucose-induced modulation of cAMP level in Saccharomyces cerevisiae.
    Van Aelst L, Boy-Marcotte E, Camonis JH, Thevelein JM, Jacquet M.
    Eur J Biochem; 1990 Nov 13; 193(3):675-80. PubMed ID: 2174363
    [Abstract] [Full Text] [Related]

  • 35. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state.
    Schamhart DH, Ten Berge AM, Van De Poll KW.
    J Bacteriol; 1975 Mar 13; 121(3):747-52. PubMed ID: 163813
    [Abstract] [Full Text] [Related]

  • 36. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.
    Jones DL, Petty J, Hoyle DC, Hayes A, Ragni E, Popolo L, Oliver SG, Stateva LI.
    Physiol Genomics; 2003 Dec 16; 16(1):107-18. PubMed ID: 14570984
    [Abstract] [Full Text] [Related]

  • 37. Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter.
    Ye L, Kruckeberg AL, Berden JA, van Dam K.
    J Bacteriol; 1999 Aug 16; 181(15):4673-5. PubMed ID: 10419970
    [Abstract] [Full Text] [Related]

  • 38. Functional coupling of the mammalian EGF receptor to the Ras/cAMP pathway in the yeast Saccharomyces cerevisiae.
    Busti S, Sacco E, Martegani E, Vanoni M.
    Curr Genet; 2008 Mar 16; 53(3):153-62. PubMed ID: 18183397
    [Abstract] [Full Text] [Related]

  • 39. Glucose induces cAMP-independent growth-related changes in stationary-phase cells of Saccharomyces cerevisiae.
    Granot D, Snyder M.
    Proc Natl Acad Sci U S A; 1991 Jul 01; 88(13):5724-8. PubMed ID: 1648229
    [Abstract] [Full Text] [Related]

  • 40. A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptake.
    Entian KD.
    Mol Gen Genet; 1980 Jul 01; 179(1):169-75. PubMed ID: 7005623
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.