These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 7556466
1. Rod outer segment (ROS) renewal as a mechanism for adaptation to a new intensity environment. I. Rhodopsin levels and ROS length. Schremser JL, Williams TP. Exp Eye Res; 1995 Jul; 61(1):17-23. PubMed ID: 7556466 [Abstract] [Full Text] [Related]
5. Adaptive changes in visual cell transduction protein levels: effect of light. Organisciak DT, Xie A, Wang HM, Jiang YL, Darrow RM, Donoso LA. Exp Eye Res; 1991 Dec; 53(6):773-9. PubMed ID: 1783015 [Abstract] [Full Text] [Related]
6. Protection by dimethylthiourea against retinal light damage in rats. Organisciak DT, Darrow RM, Jiang YI, Marak GE, Blanks JC. Invest Ophthalmol Vis Sci; 1992 Apr; 33(5):1599-609. PubMed ID: 1559759 [Abstract] [Full Text] [Related]
7. Age-related changes in retinal sensitivity, rhodopsin content and rod outer segment length in hooded rats following low-level lead exposure during development. Fox DA, Rubinstein SD. Exp Eye Res; 1989 Feb; 48(2):237-49. PubMed ID: 2924811 [Abstract] [Full Text] [Related]
8. The role of cholesterol in rod outer segment membranes. Albert AD, Boesze-Battaglia K. Prog Lipid Res; 2005 Feb; 44(2-3):99-124. PubMed ID: 15924998 [Abstract] [Full Text] [Related]
9. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate. Organisciak DT, Darrow RM, Jiang YL, Blanks JC. Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2243-57. PubMed ID: 8843911 [Abstract] [Full Text] [Related]
10. Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors. Rose K, Chen N, Andreev A, Chen J, Kefalov VJ, Chen J. Curr Biol; 2024 Apr 08; 34(7):1492-1505.e6. PubMed ID: 38508186 [Abstract] [Full Text] [Related]
12. Effect of light history on rod outer-segment membrane composition in the rat. Penn JS, Anderson RE. Exp Eye Res; 1987 Jun 08; 44(6):767-78. PubMed ID: 3653272 [Abstract] [Full Text] [Related]
13. Light damage in the rat retina: the effect of dietary deprivation of N-3 fatty acids on acute structural alterations. Bush RA, Remé CE, Malnoë A. Exp Eye Res; 1991 Dec 08; 53(6):741-52. PubMed ID: 1838336 [Abstract] [Full Text] [Related]
14. Biochemical characterization of cell specific enzymes in light-exposed rat retinas: oxidative loss of all-trans retinol dehydrogenase activity. Darrow RA, Darrow RM, Organisciak DT. Curr Eye Res; 1997 Feb 08; 16(2):144-51. PubMed ID: 9068945 [Abstract] [Full Text] [Related]
15. The development of the rod photoresponse from dark-adapted rats. Fulton AB, Hansen RM, Findl O. Invest Ophthalmol Vis Sci; 1995 May 08; 36(6):1038-45. PubMed ID: 7730013 [Abstract] [Full Text] [Related]
16. Reduced rate of rod outer segment disk synthesis in photoreceptor cells recovering from UVA light damage. Rapp LM, Fisher PL, Dhindsa HS. Invest Ophthalmol Vis Sci; 1994 Aug 08; 35(9):3540-8. PubMed ID: 8056530 [Abstract] [Full Text] [Related]
17. Dietary n-3 FA modulate long and very long chain FA content, rhodopsin content, and rhodopsin phosphorylation in rat rod outer segment after light exposure. Suh M, Wierzbicki AA, Clandini MT. Lipids; 2002 Mar 08; 37(3):253-60. PubMed ID: 11942475 [Abstract] [Full Text] [Related]
18. Bright environmental light accelerates rhodopsin depletion in retinoid-deprived rats. Katz ML, Stientjes HJ, Gao CL, Norberg M. Invest Ophthalmol Vis Sci; 1993 May 08; 34(6):2000-8. PubMed ID: 8491550 [Abstract] [Full Text] [Related]