These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


663 related items for PubMed ID: 7563095

  • 1. 6-Pyruvoyl tetrahydropterin synthase, an enzyme with a novel type of active site involving both zinc binding and an intersubunit catalytic triad motif; site-directed mutagenesis of the proposed active center, characterization of the metal binding site and modelling of substrate binding.
    Bürgisser DM, Thöny B, Redweik U, Hess D, Heizmann CW, Huber R, Nar H.
    J Mol Biol; 1995 Oct 20; 253(2):358-69. PubMed ID: 7563095
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR, Chen YW, Dekker EE.
    Arch Biochem Biophys; 1998 Oct 15; 358(2):211-21. PubMed ID: 9784233
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis.
    Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM.
    Biochemistry; 1996 Dec 17; 35(50):16282-91. PubMed ID: 8973202
    [Abstract] [Full Text] [Related]

  • 6. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues.
    Jiang M, Chen X, Wu XH, Chen M, Wu YD, Guo Z.
    Biochemistry; 2009 Jul 28; 48(29):6921-31. PubMed ID: 19545176
    [Abstract] [Full Text] [Related]

  • 7. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM, McIntosh EM, Muscat GE.
    J Mol Biol; 1999 Apr 30; 288(2):275-87. PubMed ID: 10329142
    [Abstract] [Full Text] [Related]

  • 8. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues.
    Skirgaila R, Grazulis S, Bozic D, Huber R, Siksnys V.
    J Mol Biol; 1998 Jun 05; 279(2):473-81. PubMed ID: 9642051
    [Abstract] [Full Text] [Related]

  • 9. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR, Dekker EE.
    Arch Biochem Biophys; 1998 Mar 01; 351(1):8-16. PubMed ID: 9500838
    [Abstract] [Full Text] [Related]

  • 10. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis.
    El-Hawari Y, Favia AD, Pilka ES, Kisiela M, Oppermann U, Martin HJ, Maser E.
    Chem Biol Interact; 2009 Mar 16; 178(1-3):234-41. PubMed ID: 19061875
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Three-dimensional structure of 6-pyruvoyl tetrahydropterin synthase, an enzyme involved in tetrahydrobiopterin biosynthesis.
    Nar H, Huber R, Heizmann CW, Thöny B, Bürgisser D.
    EMBO J; 1994 Mar 15; 13(6):1255-62. PubMed ID: 8137809
    [Abstract] [Full Text] [Related]

  • 13. Tracking the evolution of porphobilinogen synthase metal dependence in vitro.
    Frère F, Reents H, Schubert WD, Heinz DW, Jahn D.
    J Mol Biol; 2005 Feb 04; 345(5):1059-70. PubMed ID: 15644204
    [Abstract] [Full Text] [Related]

  • 14. Identification of mutations causing 6-pyruvoyl-tetrahydropterin synthase deficiency in four Italian families.
    Oppliger T, Thöny B, Kluge C, Matasovic A, Heizmann CW, Ponzone A, Spada M, Blau N.
    Hum Mutat; 1997 Feb 04; 10(1):25-35. PubMed ID: 9222757
    [Abstract] [Full Text] [Related]

  • 15. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D, Bonneau PR, Purisima E, Lachance P, Hajnik S, Thomas DY, Storer AC.
    Biochemistry; 1996 Apr 02; 35(13):3970-9. PubMed ID: 8672429
    [Abstract] [Full Text] [Related]

  • 16. Identification of the zinc binding ligands and the catalytic residue in human aspartoacylase, an enzyme involved in Canavan disease.
    Herga S, Berrin JG, Perrier J, Puigserver A, Giardina T.
    FEBS Lett; 2006 Oct 30; 580(25):5899-904. PubMed ID: 17027983
    [Abstract] [Full Text] [Related]

  • 17. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion.
    Meinnel T, Lazennec C, Villoing S, Blanquet S.
    J Mol Biol; 1997 Apr 04; 267(3):749-61. PubMed ID: 9126850
    [Abstract] [Full Text] [Related]

  • 18. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis.
    Erzberger JP, Wilson DM.
    J Mol Biol; 1999 Jul 09; 290(2):447-57. PubMed ID: 10390343
    [Abstract] [Full Text] [Related]

  • 19. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M, Gadda G.
    Biochemistry; 2005 Jan 25; 44(3):893-904. PubMed ID: 15654745
    [Abstract] [Full Text] [Related]

  • 20. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM, Weigel P, Takahashi M, Fort C, Versavaud A, Van Duyne G, Charlier D, Hallet JN, Glansdorff N, Sakanyan V.
    J Mol Biol; 1999 Aug 27; 291(4):843-55. PubMed ID: 10452892
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.