These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 7573498
1. Inhibition of the creatine kinase reaction decreases the contractile reserve of isolated rat hearts. Hamman BL, Bittl JA, Jacobus WE, Allen PD, Spencer RS, Tian R, Ingwall JS. Am J Physiol; 1995 Sep; 269(3 Pt 2):H1030-6. PubMed ID: 7573498 [Abstract] [Full Text] [Related]
3. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS. Circulation; 1995 Mar 15; 91(6):1824-33. PubMed ID: 7882493 [Abstract] [Full Text] [Related]
4. Glycolytic buffering affects cardiac bioenergetic signaling and contractile reserve similar to creatine kinase. Harrison GJ, van Wijhe MH, de Groot B, Dijk FJ, Gustafson LA, van Beek JH. Am J Physiol Heart Circ Physiol; 2003 Aug 15; 285(2):H883-90. PubMed ID: 12714331 [Abstract] [Full Text] [Related]
5. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligand JL, Kelly RA. Proc Natl Acad Sci U S A; 1996 May 28; 93(11):5604-9. PubMed ID: 8643623 [Abstract] [Full Text] [Related]
6. Energetic basis for reduced contractile reserve in isolated rat hearts. Tian R, Ingwall JS. Am J Physiol; 1996 Apr 28; 270(4 Pt 2):H1207-16. PubMed ID: 8967358 [Abstract] [Full Text] [Related]
7. [Metabolic and functional consequences of complete inhibition of creatine kinase by iodoacetamide in the perfused heart]. Korchazhkina OV, Lakomkin VL, Veksler VI, Shteĭnshneĭder AIa, Elizarova GV, Saks VA, Kapel'ko VI, Kupriianov VV. Biokhimiia; 1992 Feb 28; 57(2):201-13. PubMed ID: 1388056 [Abstract] [Full Text] [Related]
8. CK inhibition accelerates transcytosolic energy signaling during rapid workload steps in isolated rabbit hearts. Harrison GJ, van Wijhe MH, de Groot B, Dijk FJ, van Beek JH. Am J Physiol; 1999 Jan 28; 276(1):H134-40. PubMed ID: 9887026 [Abstract] [Full Text] [Related]
9. Thermodynamic limitation for Ca2+ handling contributes to decreased contractile reserve in rat hearts. Tian R, Halow JM, Meyer M, Dillmann WH, Figueredo VM, Ingwall JS, Camacho SA. Am J Physiol; 1998 Dec 28; 275(6):H2064-71. PubMed ID: 9843805 [Abstract] [Full Text] [Related]
10. Creatine kinase kinetics in diabetic cardiomyopathy. Matsumoto Y, Kaneko M, Kobayashi A, Fujise Y, Yamazaki N. Am J Physiol; 1995 Jun 28; 268(6 Pt 1):E1070-6. PubMed ID: 7611380 [Abstract] [Full Text] [Related]
11. [Functional significance of 2 pathways of energy transport in cardiomyocytes]. Kapel'ko VI, Kupriianov VV, Novikova NA, Lakomkin VL, Shteĭnshneĭder AIa, Korchazhkina OV, Ruuge EK, Saks VA. Kardiologiia; 1992 Apr 28; 32(4):71-4. PubMed ID: 1405243 [Abstract] [Full Text] [Related]
12. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Saupe KW, Spindler M, Tian R, Ingwall JS. Circ Res; 1998 May 04; 82(8):898-907. PubMed ID: 9576109 [Abstract] [Full Text] [Related]
13. Myocardial contractile efficiency increases in proportion to a fetal enzyme shift in chronically infarcted rat hearts. Naumann A, Neubauer S, Kuhlencordt P, Hu K, Tian R, Gaudron P, Ertl G. Basic Res Cardiol; 2005 Mar 04; 100(2):171-8. PubMed ID: 15685398 [Abstract] [Full Text] [Related]
14. Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart. Spindler M, Saupe KW, Tian R, Ahmed S, Matlib MA, Ingwall JS. J Mol Cell Cardiol; 1999 Dec 04; 31(12):2175-89. PubMed ID: 10640445 [Abstract] [Full Text] [Related]
15. Complete inhibition of creatine kinase in isolated perfused rat hearts. Fossel ET, Hoefeler H. Am J Physiol; 1987 Jan 04; 252(1 Pt 1):E124-9. PubMed ID: 2949626 [Abstract] [Full Text] [Related]
16. Myocardial creatine kinase kinetics in hearts with postinfarction left ventricular remodeling. Murakami Y, Zhang J, Eijgelshoven MH, Chen W, Carlyle WC, Zhang Y, Gong G, Bache RJ. Am J Physiol; 1999 Mar 04; 276(3):H892-900. PubMed ID: 10070072 [Abstract] [Full Text] [Related]
17. Velocity of the creatine kinase reaction in the neonatal rabbit heart: role of mitochondrial creatine kinase. Perry SB, McAuliffe J, Balschi JA, Hickey PR, Ingwall JS. Biochemistry; 1988 Mar 22; 27(6):2165-72. PubMed ID: 3378051 [Abstract] [Full Text] [Related]
18. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS. Circ Res; 1996 May 22; 78(5):893-902. PubMed ID: 8620610 [Abstract] [Full Text] [Related]
19. Function and bioenergetics in isolated perfused trained rat hearts. Spencer RG, Buttrick PM, Ingwall JS. Am J Physiol; 1997 Jan 22; 272(1 Pt 2):H409-17. PubMed ID: 9038963 [Abstract] [Full Text] [Related]
20. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model. Dos Santos P, Aliev MK, Diolez P, Duclos F, Besse P, Bonoron-Adèle S, Sikk P, Canioni P, Saks VA. J Mol Cell Cardiol; 2000 Sep 22; 32(9):1703-34. PubMed ID: 10966833 [Abstract] [Full Text] [Related] Page: [Next] [New Search]