These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1401 related items for PubMed ID: 7582549
1. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. García-Pascual A, Labadía A, Jimenez E, Costa G. Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549 [Abstract] [Full Text] [Related]
2. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D, Simonsen U, Hernández M, García-Sacristán A. Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [Abstract] [Full Text] [Related]
3. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM, Högestätt ED. Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [Abstract] [Full Text] [Related]
4. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
5. Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats. Sunano S, Watanabe H, Tanaka S, Sekiguchi F, Shimamura K. Br J Pharmacol; 1999 Feb; 126(3):709-16. PubMed ID: 10188983 [Abstract] [Full Text] [Related]
6. Nitric oxide-dependent and -independent mechanisms in the relaxation elicited by acetylcholine in fetal rat aorta. Martínez-Orgado J, González R, Alonso MJ, Marín J. Life Sci; 1999 Feb; 64(4):269-77. PubMed ID: 10027761 [Abstract] [Full Text] [Related]
7. Apamin-sensitive, non-nitric oxide (NO) endothelium-dependent relaxations to bradykinin in the bovine isolated coronary artery: no role for cytochrome P450 and K+. Drummond GR, Selemidis S, Cocks TM. Br J Pharmacol; 2000 Feb; 129(4):811-9. PubMed ID: 10683206 [Abstract] [Full Text] [Related]
8. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries. McIntyre CA, Buckley CH, Jones GC, Sandeep TC, Andrews RC, Elliott AI, Gray GA, Williams BC, McKnight JA, Walker BR, Hadoke PW. Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664 [Abstract] [Full Text] [Related]
9. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ. Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730 [Abstract] [Full Text] [Related]
10. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries. Buus NH, Simonsen U, Pilegaard HK, Mulvany MJ. Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219 [Abstract] [Full Text] [Related]
11. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Deng LY, Li JS, Schiffrin EL. Clin Sci (Lond); 1995 Jun; 88(6):611-22. PubMed ID: 7543395 [Abstract] [Full Text] [Related]
12. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H, Waldron GJ, Cole WC, Triggle CR. Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [Abstract] [Full Text] [Related]
15. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery. Kühberger E, Groschner K, Kukovetz WR, Brunner F. Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285 [Abstract] [Full Text] [Related]
16. NG-nitro-L-arginine-resistant endothelium-dependent relaxation induced by acetylcholine in the rabbit renal artery. Kitagawa S, Yamaguchi Y, Kunitomo M, Sameshima E, Fujiwara M. Life Sci; 1994 Dec; 55(7):491-8. PubMed ID: 8041228 [Abstract] [Full Text] [Related]
17. Heterogeneity of endothelium-dependent mechanisms in different rabbit arteries. Ferrer M, Encabo A, Conde MV, Marín J, Balfagón G. J Vasc Res; 1995 Dec; 32(5):339-46. PubMed ID: 7578802 [Abstract] [Full Text] [Related]
18. Endothelium-derived factors and hyperpolarization of the carotid artery of the guinea-pig. Corriu C, Félétou M, Canet E, Vanhoutte PM. Br J Pharmacol; 1996 Nov; 119(5):959-64. PubMed ID: 8922746 [Abstract] [Full Text] [Related]
19. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels. Simonsen U, Prieto D, Sánez de Tejada I, García-Sacristán A. Br J Pharmacol; 1995 Nov; 116(6):2582-90. PubMed ID: 8590974 [Abstract] [Full Text] [Related]
20. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F, Dusting GJ. Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250 [Abstract] [Full Text] [Related] Page: [Next] [New Search]