These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1076 related items for PubMed ID: 7599926

  • 1. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta.
    Yu SM, Kuo SC.
    Br J Pharmacol; 1995 Apr; 114(8):1587-94. PubMed ID: 7599926
    [Abstract] [Full Text] [Related]

  • 2. Effects of cyclic GMP elevation on isoprenaline-induced increase in cyclic AMP and relaxation in rat aortic smooth muscle: role of phosphodiesterase 3.
    Delpy E, Coste H, Gouville AC.
    Br J Pharmacol; 1996 Oct; 119(3):471-8. PubMed ID: 8894166
    [Abstract] [Full Text] [Related]

  • 3. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor.
    Yu SM, Cheng ZJ, Kuo SC.
    Eur J Pharmacol; 1995 Jun 23; 280(1):69-77. PubMed ID: 7498256
    [Abstract] [Full Text] [Related]

  • 4. Endothelium-dependent and independent relaxation of the rat aorta by cyclic nucleotide phosphodiesterase inhibitors.
    Komas N, Lugnier C, Stoclet JC.
    Br J Pharmacol; 1991 Oct 23; 104(2):495-503. PubMed ID: 1665741
    [Abstract] [Full Text] [Related]

  • 5. Cardiovascular effects of a novel, potent and selective phosphodiesterase 5 inhibitor, DMPPO: in vitro and in vivo characterization.
    Delpy E, le Monnier de Gouville AC.
    Br J Pharmacol; 1996 Jul 23; 118(6):1377-84. PubMed ID: 8832060
    [Abstract] [Full Text] [Related]

  • 6. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE, Lugnier C.
    Br J Pharmacol; 1994 Oct 23; 113(2):445-50. PubMed ID: 7834194
    [Abstract] [Full Text] [Related]

  • 7. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P, Lugnier C, Demesy-Waeldele F, Stoclet JC.
    Biochem Pharmacol; 1987 Nov 15; 36(22):3965-72. PubMed ID: 2825708
    [Abstract] [Full Text] [Related]

  • 8. Relaxation of guinea-pig trachea by cyclic AMP phosphodiesterase inhibitors and their enhancement by sodium nitroprusside.
    Turner NC, Lamb J, Worby A, Murray KJ.
    Br J Pharmacol; 1994 Apr 15; 111(4):1047-52. PubMed ID: 8032589
    [Abstract] [Full Text] [Related]

  • 9. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle.
    Wu BN, Lin RJ, Lin CY, Shen KP, Chiang LC, Chen IJ.
    Br J Pharmacol; 2001 Sep 15; 134(2):265-74. PubMed ID: 11564644
    [Abstract] [Full Text] [Related]

  • 10. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation.
    Eckly-Michel A, Martin V, Lugnier C.
    Br J Pharmacol; 1997 Sep 15; 122(1):158-64. PubMed ID: 9298542
    [Abstract] [Full Text] [Related]

  • 11. Differential effects of isoliquiritigenin and YC-1 in rat aortic smooth muscle.
    Wegener JW, Nawrath H.
    Eur J Pharmacol; 1997 Mar 26; 323(1):89-91. PubMed ID: 9105881
    [Abstract] [Full Text] [Related]

  • 12. Correlation between airway epithelium-induced relaxation of rat aorta in the co-axial bioassay and cyclic nucleotide levels.
    Hay DW, Muccitelli RM, Page CP, Spina D.
    Br J Pharmacol; 1992 Apr 26; 105(4):954-8. PubMed ID: 1324058
    [Abstract] [Full Text] [Related]

  • 13. Activation of soluble guanylyl cyclase by YC-1 in aortic smooth muscle but not in ventricular myocardium from rat.
    Wegener JW, Gath I, Förstermann U, Nawrath H.
    Br J Pharmacol; 1997 Dec 26; 122(7):1523-9. PubMed ID: 9421305
    [Abstract] [Full Text] [Related]

  • 14. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP.
    Maurice DH, Haslam RJ.
    Mol Pharmacol; 1990 May 26; 37(5):671-81. PubMed ID: 2160060
    [Abstract] [Full Text] [Related]

  • 15. Involvement of nitric oxide pathway in the PAF-induced relaxation of rat thoracic aorta.
    Moritoki H, Hisayama T, Takeuchi S, Miyano H, Kondoh W.
    Br J Pharmacol; 1992 Sep 26; 107(1):196-201. PubMed ID: 1358382
    [Abstract] [Full Text] [Related]

  • 16. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels.
    Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ.
    Br J Pharmacol; 2004 Aug 26; 142(7):1105-14. PubMed ID: 15237094
    [Abstract] [Full Text] [Related]

  • 17. Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea.
    Hwang TL, Wu CC, Teng CM.
    Br J Pharmacol; 1998 Nov 26; 125(6):1158-63. PubMed ID: 9863642
    [Abstract] [Full Text] [Related]

  • 18. Role of nitric oxide and guanosine 3',5'-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries.
    Liu SF, Crawley DE, Rohde JA, Evans TW, Barnes PJ.
    Br J Pharmacol; 1992 Nov 26; 107(3):861-6. PubMed ID: 1335345
    [Abstract] [Full Text] [Related]

  • 19. PDE4 and PDE5 regulate cyclic nucleotides relaxing effects in human umbilical arteries.
    Santos-Silva AJ, Cairrão E, Morgado M, Alvarez E, Verde I.
    Eur J Pharmacol; 2008 Mar 17; 582(1-3):102-9. PubMed ID: 18234184
    [Abstract] [Full Text] [Related]

  • 20. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators.
    Mülsch A, Bauersachs J, Schäfer A, Stasch JP, Kast R, Busse R.
    Br J Pharmacol; 1997 Feb 17; 120(4):681-9. PubMed ID: 9051308
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 54.