These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


261 related items for PubMed ID: 7602593

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Periodic distributions of hydrophobic amino acids allows the definition of fundamental building blocks to align distantly related proteins.
    Baussand J, Deremble C, Carbone A.
    Proteins; 2007 May 15; 67(3):695-708. PubMed ID: 17299747
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.
    Tan YH, Huang H, Kihara D.
    Proteins; 2006 Aug 15; 64(3):587-600. PubMed ID: 16799934
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Use of residue pairs in protein sequence-sequence and sequence-structure alignments.
    Jung J, Lee B.
    Protein Sci; 2000 Aug 15; 9(8):1576-88. PubMed ID: 10975579
    [Abstract] [Full Text] [Related]

  • 10. Enriching the sequence substitution matrix by structural information.
    Teodorescu O, Galor T, Pillardy J, Elber R.
    Proteins; 2004 Jan 01; 54(1):41-8. PubMed ID: 14705022
    [Abstract] [Full Text] [Related]

  • 11. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.
    Rice DW, Eisenberg D.
    J Mol Biol; 1997 Apr 11; 267(4):1026-38. PubMed ID: 9135128
    [Abstract] [Full Text] [Related]

  • 12. Alignment and searching for common protein folds using a data bank of structural templates.
    Johnson MS, Overington JP, Blundell TL.
    J Mol Biol; 1993 Jun 05; 231(3):735-52. PubMed ID: 8515448
    [Abstract] [Full Text] [Related]

  • 13. Eigenvalue analysis of amino acid substitution matrices reveals a sharp transition of the mode of sequence conservation in proteins.
    Kinjo AR, Nishikawa K.
    Bioinformatics; 2004 Nov 01; 20(16):2504-8. PubMed ID: 15130930
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J, Feng JA.
    Proteins; 2005 Feb 15; 58(3):628-37. PubMed ID: 15616964
    [Abstract] [Full Text] [Related]

  • 16. Variable gap penalty for protein sequence-structure alignment.
    Madhusudhan MS, Marti-Renom MA, Sanchez R, Sali A.
    Protein Eng Des Sel; 2006 Mar 15; 19(3):129-33. PubMed ID: 16423846
    [Abstract] [Full Text] [Related]

  • 17. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy.
    Domingues FS, Lackner P, Andreeva A, Sippl MJ.
    J Mol Biol; 2000 Apr 07; 297(4):1003-13. PubMed ID: 10736233
    [Abstract] [Full Text] [Related]

  • 18. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR.
    BMC Bioinformatics; 2005 Jun 22; 6():156. PubMed ID: 15969769
    [Abstract] [Full Text] [Related]

  • 19. A structural basis for sequence comparisons. An evaluation of scoring methodologies.
    Johnson MS, Overington JP.
    J Mol Biol; 1993 Oct 20; 233(4):716-38. PubMed ID: 8411177
    [Abstract] [Full Text] [Related]

  • 20. Analysis and prediction of functional sub-types from protein sequence alignments.
    Hannenhalli SS, Russell RB.
    J Mol Biol; 2000 Oct 13; 303(1):61-76. PubMed ID: 11021970
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.