These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


94 related items for PubMed ID: 760385

  • 1. Kinetic studies of dose-dependent metabolism of alprenolol: in vitro and in vivo studies in different species.
    Skånberg I, Borg KO, Fellenius E, Hoffmann KJ, von Bahr C, Moldéus P.
    Acta Pharmacol Toxicol (Copenh); 1979 Jan; 44(1):28-35. PubMed ID: 760385
    [Abstract] [Full Text] [Related]

  • 2. Cytochrome P450 isozymes involved in aromatic hydroxylation and side-chain N-desisopropylation of alprenolol in rat liver microsomes.
    Narimatsu S, Tachibana M, Masubuchi Y, Imaoka S, Funae Y, Suzuki T.
    Biol Pharm Bull; 1995 Aug; 18(8):1060-5. PubMed ID: 8535396
    [Abstract] [Full Text] [Related]

  • 3. Biotransformation of alprenolol in dog, guinea-pig and rat liver microsomes.
    Hoffmann KJ, Skånberg I, Borg KO.
    Xenobiotica; 1979 Feb; 9(2):79-91. PubMed ID: 433313
    [Abstract] [Full Text] [Related]

  • 4. Study of the metabolic pathways of alprenolol in man and the dog using stable isotopes.
    Hoffmann KJ, Arfwidsson A, Borg KO, Skånberg I.
    Biomed Mass Spectrom; 1978 Nov; 5(11):634-40. PubMed ID: 749958
    [Abstract] [Full Text] [Related]

  • 5. Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry.
    Bussy U, Delaforge M, El-Bekkali C, Ferchaud-Roucher V, Krempf M, Tea I, Galland N, Jacquemin D, Boujtita M.
    Anal Bioanal Chem; 2013 Jul; 405(18):6077-85. PubMed ID: 23700103
    [Abstract] [Full Text] [Related]

  • 6. Identification of the major urinary metabolite of alprenolol in man, dog and rat.
    Bodin NO.
    Life Sci; 1974 Feb 16; 14(4):685-92. PubMed ID: 4823625
    [No Abstract] [Full Text] [Related]

  • 7. Species differences in the toxicity and cytochrome P450 IIIA-dependent metabolism of digitoxin.
    Eberhart DC, Gemzik B, Halvorson MR, Parkinson A.
    Mol Pharmacol; 1991 Nov 16; 40(5):859-67. PubMed ID: 1944247
    [Abstract] [Full Text] [Related]

  • 8. Metabolism of two beta-adrenoceptor antagonists, alprenolol and metoprolol, in different species. In-vitro and in-vivo correlations.
    Skånberg I.
    Acta Pharm Suec; 1980 Nov 16; 17(5):295-6. PubMed ID: 7223445
    [No Abstract] [Full Text] [Related]

  • 9. Identification of urinary and biliary metabolites of alprenolol in the rat.
    Hoffmann KJ, Arfwidsson A, Borg KO, Skånberg I.
    Xenobiotica; 1979 Feb 16; 9(2):93-106. PubMed ID: 433314
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Absorption, distribution and excretion of alprenolol in man, dog and rat.
    Bodin NO, Borg KO, Johansson R, Obianwu H, Svensson R.
    Acta Pharmacol Toxicol (Copenh); 1974 Oct 16; 35(4):261-9. PubMed ID: 4479578
    [No Abstract] [Full Text] [Related]

  • 12. Metabolism of alprenolol in liver microsomes, perfused liver and conscious rat.
    Borg KO, Eklund B, Skånberg I, Wallborg M.
    Acta Pharmacol Toxicol (Copenh); 1974 Sep 16; 35(3):169-79. PubMed ID: 4479244
    [No Abstract] [Full Text] [Related]

  • 13. The possible role of cytochrome P-450 in the liver "first pass elimination" of a beta-receptor blocking drug.
    Grundin R, Moldéus P, Orrenius S, Borg KO, Skånberg I, von Bahr C.
    Acta Pharmacol Toxicol (Copenh); 1974 Sep 16; 35(3):242-60. PubMed ID: 4479306
    [No Abstract] [Full Text] [Related]

  • 14. Hexobarbital-binding, hydroxylation and hexobarbital-dependent hydrogen peroxide production in hepatic microsomes of guinea pig, rat and rabbit.
    Heinemeyer G, Nigam S, Hildebrandt AG.
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov 16; 314(2):201-10. PubMed ID: 7453835
    [Abstract] [Full Text] [Related]

  • 15. Stoichiometric interaction of a beta-receptor blocking drug with fraction of liver cytochrome P-450 as a possible cause for its dose-dependent availability.
    von Bahr C, Vadi H, Norlin A, Moldéus P.
    Acta Pharmacol Toxicol (Copenh); 1976 May 16; 38(5):513-24. PubMed ID: 989254
    [No Abstract] [Full Text] [Related]

  • 16. Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation.
    Pearce R, Greenway D, Parkinson A.
    Arch Biochem Biophys; 1992 Oct 16; 298(1):211-25. PubMed ID: 1381906
    [Abstract] [Full Text] [Related]

  • 17. Metabolism of ezlopitant, a nonpeptidic substance P receptor antagonist, in liver microsomes: enzyme kinetics, cytochrome P450 isoform identity, and in vitro-in vivo correlation.
    Obach RS.
    Drug Metab Dispos; 2000 Sep 16; 28(9):1069-76. PubMed ID: 10950851
    [Abstract] [Full Text] [Related]

  • 18. [Comparative study on metabolism of three tetrachlorobiphenyls with animal liver microsomes].
    Koga N, Kanamaru T, Oishi N, Matsushima Y, Kato S, Yoshimura H, Kuroki H.
    Fukuoka Igaku Zasshi; 1999 May 16; 90(5):220-30. PubMed ID: 10396878
    [Abstract] [Full Text] [Related]

  • 19. Effect of 3-methylcholanthrene on bunitrolol metabolism. Kinetics and immunological studies on 4-hydroxylation of bunitrolol catalyzed by two species of cytochromes P450 in rat liver microsomes.
    Fujita S, Masuda M, Shimamoto Y, Hoshi H, Kariya S, Kazusaka A, Suzuki T.
    Drug Metab Dispos; 1996 Feb 16; 24(2):254-9. PubMed ID: 8742239
    [Abstract] [Full Text] [Related]

  • 20. In vivo pharmacokinetics of felodipine predicted from in vitro studies in rat, dog and man.
    Bäärnhielm C, Dahlbäck H, Skånberg I.
    Acta Pharmacol Toxicol (Copenh); 1986 Aug 16; 59(2):113-22. PubMed ID: 3776550
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.