These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 7605375
1. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Ball RY, Stowers EC, Burton JH, Cary NR, Skepper JN, Mitchinson MJ. Atherosclerosis; 1995 Apr 07; 114(1):45-54. PubMed ID: 7605375 [Abstract] [Full Text] [Related]
2. Foam cell apoptosis and the development of the lipid core of human atherosclerosis. Hegyi L, Skepper JN, Cary NR, Mitchinson MJ. J Pathol; 1996 Dec 07; 180(4):423-9. PubMed ID: 9014864 [Abstract] [Full Text] [Related]
3. Apoptotic macrophage-derived foam cells of human atheromas are rich in iron and ferritin, suggesting iron-catalysed reactions to be involved in apoptosis. Yuan XM. Free Radic Res; 1999 Mar 07; 30(3):221-31. PubMed ID: 10711792 [Abstract] [Full Text] [Related]
4. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. Circulation; 1995 Sep 01; 92(5):1355-74. PubMed ID: 7648691 [Abstract] [Full Text] [Related]
5. Phenotype determination of anti-GM3 positive cells in atherosclerotic lesions of the human aorta. Hypothetical role of ganglioside GM3 in foam cell formation. Bobryshev YV, Lord RS, Golovanova NK, Gracheva EV, Zvezdina ND, Prokazova NV. Biochim Biophys Acta; 2001 Feb 14; 1535(2):87-99. PubMed ID: 11341997 [Abstract] [Full Text] [Related]
6. Human aortic fibrolipid lesions. Progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core. Bocan TM, Guyton JR. Am J Pathol; 1985 Aug 14; 120(2):193-206. PubMed ID: 4025509 [Abstract] [Full Text] [Related]
7. Foam cells and atherogenesis. Fowler SD, Mayer EP, Greenspan P. Ann N Y Acad Sci; 1985 Aug 14; 454():79-90. PubMed ID: 3907470 [No Abstract] [Full Text] [Related]
8. [Immunocytochemical investigations of cardiac and vessel allograft arteriosclerosis using smooth muscle cell and macrophage-specific monoclonal antibodies]. Sasaguri S. Nihon Geka Gakkai Zasshi; 1989 Nov 14; 90(11):1840-7. PubMed ID: 2608013 [Abstract] [Full Text] [Related]
9. Macrophage foam cells and atherosclerosis. Kruth HS. Front Biosci; 2001 Mar 01; 6():D429-55. PubMed ID: 11229875 [Abstract] [Full Text] [Related]
10. Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies. Klurfeld DM. Arch Pathol Lab Med; 1985 May 01; 109(5):445-9. PubMed ID: 2580504 [Abstract] [Full Text] [Related]
11. Characterization of atherosclerotic lesions in apo E3-leiden transgenic mice. Leppänen P, Luoma JS, Hofker MH, Havekes LM, Ylä-Herttuala S. Atherosclerosis; 1998 Jan 01; 136(1):147-52. PubMed ID: 9544741 [Abstract] [Full Text] [Related]
12. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA. Circulation; 2014 Apr 15; 129(15):1551-9. PubMed ID: 24481950 [Abstract] [Full Text] [Related]
13. Immunohistochemical localization of apolipoprotein B-100 (ApoB-100) and expression of glutathione peroxidase (GSH-PO) in canine atherosclerotic lesions. Kagawa Y, Uchida E, Yokota H, Yamaguchi M, Taniyama H. Vet Pathol; 1998 May 15; 35(3):227-9. PubMed ID: 9598588 [Abstract] [Full Text] [Related]
14. Galectin-3 expression in human atherosclerotic lesions. Nachtigal M, Al-Assaad Z, Mayer EP, Kim K, Monsigny M. Am J Pathol; 1998 May 15; 152(5):1199-208. PubMed ID: 9588889 [Abstract] [Full Text] [Related]
15. Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Kruth HS. Atherosclerosis; 1985 Nov 15; 57(2-3):337-41. PubMed ID: 4084363 [Abstract] [Full Text] [Related]
16. Development of intracellular lipid deposits in the lipid-laden cells of atherosclerotic lesions. A cytochemical and ultrastructural study. Lupu F, Danaricu I, Simionescu N. Atherosclerosis; 1987 Oct 15; 67(2-3):127-42. PubMed ID: 2445362 [Abstract] [Full Text] [Related]
17. Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Zhou J, Lhoták S, Hilditch BA, Austin RC. Circulation; 2005 Apr 12; 111(14):1814-21. PubMed ID: 15809369 [Abstract] [Full Text] [Related]
18. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Kume S, Takeya M, Mori T, Araki N, Suzuki H, Horiuchi S, Kodama T, Miyauchi Y, Takahashi K. Am J Pathol; 1995 Sep 12; 147(3):654-67. PubMed ID: 7545874 [Abstract] [Full Text] [Related]
19. [Numbers of cells and cell proliferation in intima of different human arteries]. Bobryshev IuV, Karagodin VP, Kovalevskaia ZhI, Miasoedova VA, Shapyrina EV, Saliamov VI, Kargapolova IuM, Galaktionova DIu, Mel'nichenko AA, Orekhov AN. Tsitologiia; 2011 Sep 12; 53(10):815-25. PubMed ID: 22232939 [Abstract] [Full Text] [Related]
20. Lipoprotein-proteoglycan complexes induce continued cholesteryl ester accumulation in foam cells from rabbit atherosclerotic lesions. Vijayagopal P, Srinivasan SR, Xu JH, Dalferes ER, Radhakrishnamurthy B, Berenson GS. J Clin Invest; 1993 Mar 12; 91(3):1011-8. PubMed ID: 8450030 [Abstract] [Full Text] [Related] Page: [Next] [New Search]