These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


100 related items for PubMed ID: 7620857

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Computer analysis of the significance of the effective osmolality for urea across the inner medullary collecting duct in the operation of a single effect for the counter-current multiplication system.
    Taniguchi J, Imai M.
    Clin Exp Nephrol; 2006 Dec; 10(4):236-43. PubMed ID: 17186327
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Osmotic work across inner medullary collecting duct accomplished by difference in reflection coefficients for urea and NaCl.
    Imai M, Taniguchi J, Yoshitomi K.
    Pflugers Arch; 1988 Oct; 412(6):557-67. PubMed ID: 3211709
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Apical membrane limits urea permeation across the rat inner medullary collecting duct.
    Star RA.
    J Clin Invest; 1990 Oct; 86(4):1172-8. PubMed ID: 2212006
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
    Schafer JA, Patlak CS, Andreoli TE.
    J Gen Physiol; 1974 Aug; 64(2):201-27. PubMed ID: 4846767
    [Abstract] [Full Text] [Related]

  • 9. Independence of urea and water transport in rat inner medullary collecting duct.
    Knepper MA, Sands JM, Chou CL.
    Am J Physiol; 1989 Apr; 256(4 Pt 2):F610-21. PubMed ID: 2705534
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Optimal transport parameters of the inner medullary collecting duct in interaction between urine concentrating and urea excreting mechanisms: a computer simulation study.
    Hamada Y, Taniguchi J, Imai M.
    Nephron; 1996 Apr; 74(3):600-6. PubMed ID: 8938688
    [Abstract] [Full Text] [Related]

  • 12. Urea transporters and renal function: lessons from knockout mice.
    Fenton RA.
    Curr Opin Nephrol Hypertens; 2008 Sep; 17(5):513-8. PubMed ID: 18695393
    [Abstract] [Full Text] [Related]

  • 13. The vasopressin-regulated urea transporter in renal inner medullary collecting duct.
    Knepper MA, Star RA.
    Am J Physiol; 1990 Sep; 259(3 Pt 2):F393-401. PubMed ID: 2204274
    [Abstract] [Full Text] [Related]

  • 14. Osmolarity-stimulated urea transport in rat terminal IMCD: role of intracellular calcium.
    Gillin AG, Star RA, Sands JM.
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F272-7. PubMed ID: 8396346
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Water extraction from the inner medullary collecting tubule system: a role for urea.
    Sanjana VM, Robertson CR, Jamison RL.
    Kidney Int; 1976 Aug; 10(2):139-46. PubMed ID: 966451
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules.
    Schafer JA, Andreoli TE.
    J Clin Invest; 1972 May; 51(5):1279-86. PubMed ID: 5057132
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.