These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 7622333
1. Strongyloides ratti: mitochondrial enzyme activities of the classical electron transport pathway in the infective (L3) larvae. Armson A, Grubb WB, Mendis AH. Int J Parasitol; 1995 Feb; 25(2):257-60. PubMed ID: 7622333 [Abstract] [Full Text] [Related]
2. The effect of electron transport (ET) inhibitors and thiabendazole on the fumarate reductase (FR) and succinate dehydrogenase (SDH) of Strongyloides ratti infective (L3) larvae. Armson A, Grubb WB, Mendis AH. Int J Parasitol; 1995 Feb; 25(2):261-3. PubMed ID: 7622334 [Abstract] [Full Text] [Related]
4. The response of intact Strongyloides ratti infective (L3) larvae to substrates and inhibitors of respiratory electron transport. Mendis AH, Armson A, Thompson RC, Grubb WB. Int J Parasitol; 1991 Dec; 21(8):965-8. PubMed ID: 1787040 [Abstract] [Full Text] [Related]
5. Strongyloides ratti: fumarate reductase and succinate dehydrogenase activities of infective larvae. Armson A, Grubb WB, Mendis AH. Int J Parasitol; 1993 Sep; 23(6):809-11. PubMed ID: 8300291 [Abstract] [Full Text] [Related]
8. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase. Yu L, Yu CA. J Biol Chem; 1982 Sep 10; 257(17):10215-21. PubMed ID: 6286644 [No Abstract] [Full Text] [Related]
9. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Brasseur G, Tron G, Dujardin G, Slonimski PP, Brivet-Chevillotte P. Eur J Biochem; 1997 May 15; 246(1):103-11. PubMed ID: 9210471 [Abstract] [Full Text] [Related]
10. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors. Yamashita A, Miyoshi H, Hatano T, Iwamura H. J Biochem; 1996 Aug 15; 120(2):377-84. PubMed ID: 8889824 [Abstract] [Full Text] [Related]
11. Localization of a ferricyanide-reactive site of cytochrome b-c1 complex, possibly of cytochrome b or ubisemiquinone, at the outer face of submitochondrial particles. Kunz WS, Konstantinov A, Tsofina L, Liberman EA. FEBS Lett; 1984 Jul 09; 172(2):261-6. PubMed ID: 6086391 [Abstract] [Full Text] [Related]
12. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. González-Flecha B, Boveris A. Biochim Biophys Acta; 1995 Apr 13; 1243(3):361-6. PubMed ID: 7727510 [Abstract] [Full Text] [Related]
13. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether. Suzuki H, Wakai M, Ozawa T. Biochem Int; 1986 Aug 13; 13(2):351-7. PubMed ID: 3094534 [Abstract] [Full Text] [Related]
14. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Riobó NA, Clementi E, Melani M, Boveris A, Cadenas E, Moncada S, Poderoso JJ. Biochem J; 2001 Oct 01; 359(Pt 1):139-45. PubMed ID: 11563977 [Abstract] [Full Text] [Related]
15. Studies of the electron transport chain of the euryarcheon Halobacterium salinarum: indications for a type II NADH dehydrogenase and a complex III analog. Sreeramulu K, Schmidt CL, Schäfer G, Anemüller S. J Bioenerg Biomembr; 1998 Oct 01; 30(5):443-53. PubMed ID: 9932647 [Abstract] [Full Text] [Related]
16. The pathway of electrons through OH2:cytochrome c oxidoreductase studied by pre-steady -state kinetics. De Vries S, Albracht SP, Berden JA, Slater EC. Biochim Biophys Acta; 1982 Jul 22; 681(1):41-53. PubMed ID: 6288082 [Abstract] [Full Text] [Related]
17. Kinetics of ubiquinol-1-cytochrome c reductase in bovine heart mitochondria and submitochondrial particles. Degli Esposti M, Lenaz G. Biochim Biophys Acta; 1982 Nov 15; 682(2):189-200. PubMed ID: 6293557 [Abstract] [Full Text] [Related]
18. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'. Halestrap AP. Biochem J; 1982 Apr 15; 204(1):49-59. PubMed ID: 6288019 [Abstract] [Full Text] [Related]
19. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells. Suzuki S, Higuchi M, Proske RJ, Oridate N, Hong WK, Lotan R. Oncogene; 1999 Nov 04; 18(46):6380-7. PubMed ID: 10597238 [Abstract] [Full Text] [Related]
20. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Davies KJ, Doroshow JH. J Biol Chem; 1986 Mar 05; 261(7):3060-7. PubMed ID: 3456345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]