These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 7622507
1. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B. J Biol Chem; 1995 Jul 14; 270(28):16903-10. PubMed ID: 7622507 [Abstract] [Full Text] [Related]
2. Interdomain communication in the molecular chaperone DnaK. Han W, Christen P. Biochem J; 2003 Feb 01; 369(Pt 3):627-34. PubMed ID: 12383055 [Abstract] [Full Text] [Related]
3. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Moro F, Fernández-Sáiz V, Muga A. Protein Sci; 2006 Feb 01; 15(2):223-33. PubMed ID: 16384998 [Abstract] [Full Text] [Related]
4. The second step of ATP binding to DnaK induces peptide release. Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J. J Mol Biol; 1996 Nov 15; 263(5):657-70. PubMed ID: 8947566 [Abstract] [Full Text] [Related]
5. Energetics of nucleotide-induced DnaK conformational states. Taneva SG, Moro F, Velázquez-Campoy A, Muga A. Biochemistry; 2010 Feb 16; 49(6):1338-45. PubMed ID: 20078127 [Abstract] [Full Text] [Related]
6. Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino- and carboxyl-terminal residues in substrate and co-chaperone interaction and interdomain communication. Buchberger A, Gässler CS, Büttner M, McMacken R, Bukau B. J Biol Chem; 1999 Dec 31; 274(53):38017-26. PubMed ID: 10608870 [Abstract] [Full Text] [Related]
7. ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. Barthel TK, Zhang J, Walker GC. J Bacteriol; 2001 Oct 31; 183(19):5482-90. PubMed ID: 11544208 [Abstract] [Full Text] [Related]
8. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis. Slepenkov SV, Witt SN. Biochemistry; 1998 Jan 27; 37(4):1015-24. PubMed ID: 9454592 [Abstract] [Full Text] [Related]
9. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release. Slepenkov SV, Patchen B, Peterson KM, Witt SN. Biochemistry; 2003 May 20; 42(19):5867-76. PubMed ID: 12741845 [Abstract] [Full Text] [Related]
10. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Landry SJ. Biochemistry; 2003 May 06; 42(17):4926-36. PubMed ID: 12718534 [Abstract] [Full Text] [Related]
11. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Sriram M, Osipiuk J, Freeman B, Morimoto R, Joachimiak A. Structure; 1997 Mar 15; 5(3):403-14. PubMed ID: 9083109 [Abstract] [Full Text] [Related]
12. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. Mol Cell; 2007 Apr 13; 26(1):27-39. PubMed ID: 17434124 [Abstract] [Full Text] [Related]
13. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ. Biochemistry; 2003 May 06; 42(17):4937-44. PubMed ID: 12718535 [Abstract] [Full Text] [Related]
14. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle. Banerjee R, Jayaraj GG, Peter JJ, Kumar V, Mapa K. FEBS J; 2016 Aug 06; 283(15):2853-68. PubMed ID: 27248857 [Abstract] [Full Text] [Related]
15. Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state. Slepenkov SV, Witt SN. Biochemistry; 2002 Oct 08; 41(40):12224-35. PubMed ID: 12356325 [Abstract] [Full Text] [Related]
16. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y, Klostermeier D, Herrmann C, Veit T, Seidel R, Reinstein J. J Mol Biol; 2001 Feb 02; 305(5):1173-83. PubMed ID: 11162122 [Abstract] [Full Text] [Related]
17. Defining the structure of the substrate-free state of the DnaK molecular chaperone. Swain JF, Sivendran R, Gierasch LM. Biochem Soc Symp; 2001 Feb 02; (68):69-82. PubMed ID: 11573348 [Abstract] [Full Text] [Related]
18. Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action. Banecki B, Zylicz M. J Biol Chem; 1996 Mar 15; 271(11):6137-43. PubMed ID: 8626401 [Abstract] [Full Text] [Related]
19. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state. Liu Q, Li H, Yang Y, Tian X, Su J, Zhou L, Liu Q. Cell Stress Chaperones; 2017 Mar 15; 22(2):201-212. PubMed ID: 27975204 [Abstract] [Full Text] [Related]
20. Detection of a concerted conformational change in the ATPase domain of DnaK triggered by peptide binding. Slepenkov SV, Witt SN. FEBS Lett; 2003 Mar 27; 539(1-3):100-4. PubMed ID: 12650934 [Abstract] [Full Text] [Related] Page: [Next] [New Search]